

# METALS PROCESSING AREA, FORMER STEELWORKS, REDCAR

Phase II Environmental Site Assessment Deep Soils and Controlled Waters

South Tees Development Corporation

REPORT NO. 10035117-AUK-XX-XX-RP-ZZ-0233-01-MRA\_Deep\_Soils

DECEMBER 2020





Incorporating

# **CONTACTS**



# **NEIL THURSTON Project Manager**

dd 01132 845300 m 07870 572824 e Neil.Thurston@arcadis.com Arcadis.
1 Whitehall Riverside
Leeds
LS1 4BN

Author Annie Harding / Jonathan Miles

Checker Neil Thurston

Authorized Katy Baker

Report No 10035117-AUK-XX-XX-RP-ZZ-0233-01-MPA\_Deep\_Soils

Date DECEMBER 2020

# **VERSION CONTROL**

| Version | Date       | Author                            | Changes |
|---------|------------|-----------------------------------|---------|
| 01      | 14/12/2020 | Annie Harding /<br>Jonathan Miles |         |

This report dated December 2020 has been prepared for South Tees Site Company (the "Client") in accordance with the terms and conditions of appointment dated 14 September 2017(the "Appointment") between the Client and **Arcadis (UK) Limited** ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

# **CONTENTS**

| 1                                                       | INTRODUCTION                                                                            | 1                    |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|
| 1.1                                                     | Project Background                                                                      | 1                    |
| 1.2                                                     | Contract Details                                                                        | 1                    |
| 1.3                                                     | Projects Aims and Objectives                                                            | 1                    |
| 1.4                                                     | Report Aims                                                                             | 1                    |
| 1.5                                                     | Reliability / Limitations of Information                                                | 2                    |
| 2                                                       | SITE CONCEPTUALISATION                                                                  | 3                    |
| 2.1                                                     | Site Location                                                                           | 3                    |
| 2.2                                                     | Site Description                                                                        | 3                    |
| 2.3                                                     | Site History                                                                            | 4                    |
| 2.4                                                     | UXO Assessment                                                                          | 4                    |
| 2.5                                                     | Geology                                                                                 |                      |
| 2.6                                                     | Hydrogeology                                                                            |                      |
| 2.7                                                     | Slug Testing                                                                            |                      |
| 2.8                                                     | Tidal Influence                                                                         |                      |
| 2.9                                                     | Aquifer Salinity                                                                        |                      |
| 2.10                                                    | Hydrology                                                                               |                      |
| 2.11                                                    | Potential Areas of Concern                                                              | 10                   |
| 3                                                       | ENVIRONMENTAL SITE CONDITION ASSESSMENT                                                 |                      |
| 3.1                                                     | Introduction                                                                            | 11                   |
| 3.2                                                     | Contamination Sources                                                                   | 11                   |
| 3.2.1                                                   | On-Site                                                                                 | 11                   |
| 3.2.2                                                   | Off-Site                                                                                | 12                   |
| 3.3                                                     | Contamination Sources Assessment                                                        | 12                   |
| 3.3.1                                                   |                                                                                         |                      |
| J.J. I                                                  | Made Ground                                                                             | 12                   |
|                                                         | Made Ground                                                                             |                      |
| 3.3.2                                                   |                                                                                         | 13                   |
| 3.3.2<br>3.3.3                                          | Superficial Deposits                                                                    | 13<br>13             |
| 3.3.2<br>3.3.3<br>3.3.4                                 | Superficial Deposits                                                                    | 13<br>13             |
| 3.3.2<br>3.3.3<br>3.3.4<br><b>3.4</b>                   | Superficial Deposits  Groundwater  Surface Water                                        | 13<br>13<br>14       |
| 3.3.2<br>3.3.3<br>3.3.4<br><b>3.4</b><br>3.4.1<br>3.4.2 | Superficial Deposits  Groundwater  Surface Water  Pathways                              | 13<br>13<br>13<br>14 |
| 3.3.2<br>3.3.3<br>3.3.4<br><b>3.4</b><br>3.4.1          | Superficial Deposits  Groundwater  Surface Water  Pathways  Airborne Migration Pathways | 13<br>13<br>14<br>15 |

| 3.5.1 | Human Health                                                                            | 15       |
|-------|-----------------------------------------------------------------------------------------|----------|
| 3.5.2 | Property (buildings, etc)                                                               | 16       |
| 3.5.3 | Controlled Water                                                                        | 16       |
| 3.5.4 | Ecological                                                                              | 16       |
| 3.6   | Obstructions                                                                            | 16       |
| 3.7   | Ground Gas Assessment                                                                   | 16       |
| 3.8   | Slag Testing Data                                                                       | 17       |
| 3.9   | Conceptual Site Model                                                                   | 17       |
| 4     | GENERIC QUANTITATIVE RISK ASSESSMENT                                                    | 19       |
| 4.1   | Tiered Approach                                                                         |          |
| 4.2   | Human Health Risks                                                                      |          |
| 4.2.1 | Selection of Soil GAC                                                                   | 19       |
| 4.2.2 | Soil Risk Assessment                                                                    | 20       |
| 4.2.3 | Asbestos in Soil                                                                        | 21       |
| 4.2.4 | Qualitative Risk Assessment for Substances in Soil without GACs                         | 21       |
| 4.2.5 | Selection of Groundwater GAC                                                            | 21       |
| 4.2.6 | Groundwater Risk Assessment                                                             | 21       |
| 4.2.7 | Qualitative Risk Assessment for Substances in Groundwater Without GAC                   | 22       |
| 4.2.8 | Discussion                                                                              | 22       |
| 4.3   | Risks to Controlled Waters                                                              | 22       |
| 4.3.1 | Selection of GAC                                                                        | 22       |
| 4.3.2 | Soil Leachate                                                                           | 22       |
| 4.3.3 | Groundwater                                                                             | 25       |
| 4.3.4 | Surface water                                                                           | 27       |
| 4.3.5 | Qualitative Risk Assessment for Substances in Leachate, Surface and Groundwater with 28 | nout WQS |
| 4.3.6 | Discussion                                                                              | 29       |
| 4.4   | Ground Gas                                                                              | 30       |
| 4.5   | Built Receptors                                                                         | 30       |
| 5     | UPDATED CONCEPTUAL SITE MODEL                                                           | 31       |
| 6     | CONCLUSIONS                                                                             | 32       |
| 6.1   | Human Health Risk                                                                       | 32       |
| 6.2   | Controlled Waters                                                                       | 32       |

6.3 Recommendations......32

# **APPENDICES**

#### **APPENDIX A**

**Figures** 

#### **APPENDIX B**

**Study Limitations** 

#### **APPENDIX C**

**DRAFT AEG Data** 

#### **APPENDIX D**

**GQRA - Summary of Soil Screen** 

#### **APPENDIX E**

**GQRA – Summary of Soil Leachate Screen** 

#### **APPENDIX F**

**GQRA – Summary Groundwater Screen** 

#### **APPENDIX G**

**GQRA - Summary Surface Water Screen** 

### 1 Introduction

# 1.1 Project Background

The Metals Processing Area (MPA) (the site) is a land parcel situated at the Former Redcar Steelworks located within the Redcar, Lackenby, Grangetown and South Bank conurbations of the Borough of Redcar & Cleveland, within the industrial area generally known as 'South Tees'. Figure 1 in Appendix A provides details of the site location.

The "South Tees Regeneration Master Plan" dated November 2019 has been developed detailing the industrial-led regeneration of the Former Redcar Steelworks into a world class employment-generating zone and economic growth enabler for the Tees Valley.

The Masterplan has identified the MPA as being located within the South Bank Zone. The site is a priority development area and Arcadis understands this report is to be used within a detailed planning application for "Demolition of existing buildings/ structures and engineering operations associated with ground remediation and preparation of land for development".

#### 1.2 Contract Details

Arcadis (UK) Limited (Arcadis) was appointed by South Tees Development Corporation (STDC) to oversee and manage a ground investigation undertaken by Allied Exploration and Geotechnics Limited (AEG) and to provide consultancy advice on the redevelopment of the site.

The work was carried out in accordance with the "Prairie Site, Warrenby Site and the SLEMS Ground Investigations Provision of Consultancy Services" Agreement between Tees Valley Combined Authority and Arcadis.

The scope of works was defined by Arcadis, on behalf of STDC, as presented in "Metals Recovery Area – PM and Technical Support (updated)" dated 1st July 2020. At the request of STDC the investigation was split into two phases, an initial investigation of shallow soils (completed) and a subsequent investigation of deeper soils and groundwater (this phase) to be conducted when further certainty on redevelopment scenarios had been confirmed.

# 1.3 Projects Aims and Objectives

As technical consultant, our specific objectives of this phase of works were to:

- Manage and technically supervise the site works, undertaken by AEG, on behalf of STDC;
- Direct the site works to ensure compliance by the ground investigation contractors with existing site management protocols and procedures;
- Specify the requirements for laboratory analysis;
- Analyse the results of ground investigations; and,
- Prepare interpretative technical reports, namely;
  - Prepare an interpretative technical report including an assessment of identified environmental risks associated with the site considering the findings of the initial shallow soils investigation (Arcadis report ref: 10035117-AUK-XX-XX-RP-ZZ-0125-02-MPA\_Shallow\_Soils, issued November 2020).
  - Prepare an interpretative technical report including an assessment of identified environmental risks associated with the site considering the findings of the subsequent deep soils (>4.5m bgl) and groundwater investigation (this document),

# 1.4 Report Aims

The aim of this environmental site assessment report is to use the available information to develop a conceptual site model (CSM) for the site and identify the potential significance of any source-pathway-receptor (SPR) linkages identified by the CSM in relation to deep soils and groundwater at the site. Where significant,

and potentially complete pollutant linkages are identified, suitable risk management/remediation recommendations are to be made.

# 1.5 Reliability / Limitations of Information

A complete list of Arcadis Study Limitations is presented in Appendix B.

It should be noted that ground conditions between exploratory holes may vary from those identified during this ground investigation; any design should take this into consideration.

# 2 Site Conceptualisation

No specific Phase I Environmental Site Assessment (ESA) exists for the site. However, the northern portion of the site is covered by the following document supplied by STDC:

• TS4 South Bank – Phase 1 Geo-Environmental Desk Study, prepared by CH2M Hill for the Homes and Communities Agency, report ref. 678079 TS4 002 dated August 2017 and marked Final.

The site is also considered in:

- South Industrial Zone ES Vol 2 Chapter H (Ground Conditions and Remediation), prepared by Arcadis for STDC and dated July 2020.
- Metals Processing Area, Former Steelworks, Redcar Phase II Environmental Site Assessment (Shallow Soils), prepared by Arcadis for STDC, report ref. 10035117-AUK-XX-XX-RP-ZZ-0125-02-MPA\_Shallow\_Soils dated November 2020.

In addition, STDC also supplied the following documents:

 Former Steelworks Land, South Tees Outline Remedial Strategy, Prepared for South Tees Development Corporation by Wood, Ref 41825-wood-XX-XX-RP-OC-0001\_S0\_P01 dated 25th June 2019 [Wood 2019].

This section incorporates a review of the above reports, publicly available records, and data collected as part of the site investigation works by AEG. At the time of issue AEG's final factual ground investigation report [AEG, in press] was not available for review. This report has been completed based on **draft data** and will be updated when the final ground investigation factual report is available.

The scope completed by AEG included:

- 9no. boreholes drilled by a sonic rig, to a target depth of 20-25m bgl, or until rockhead was encountered; and,
- Soil sampling for in-field assessment and submission to Derwentside Environmental Testing Services (DETS), AEG in-house Geotechnical Laboratory and Thomas Research Services (TRS) laboratories for chemical and geotechnical testing.

#### 2.1 Site Location

The MPA is located in the south west of the Former Redcar Steelworks and is bound by land occupied by MGT Teesside to the north, PD Ports to the east, the SLEMs and Cleveland Channel to the south and the wider South Bank site to the west. The site elevation generally ranges from approximately 7m to 12m above Ordnance Datum (AOD).

The centre of site is located at National Grid Reference: 454600, 522600; and an indicative post code for the site is TS10 5QW.

A Site Location Plan is presented on Figure 1 within Appendix A.

# 2.2 Site Description

The site is approximately 21.5 hectares in size and approximately rectangular in shape tapering to the south. The southern boundary is marked by a rapid change in level to the Cleveland Channel (approx. 2 to 3m AOD) with the SLEMs facility beyond. The Cleveland Channel discharges into the Lackenby Channel which runs parallel to the eastern boundary of the site. Both the Cleveland and Lackenby channels are tidal and discharge into the River Tees a short distance north of the site.

PD Ports facilities are located to the east (beyond the Cleveland Channel) and include a utility corridor, port buildings and wharf facilities. The area north of the site is currently under development as a biomass power station operated by MGT Teesside. A third party landfill (land rise) Highfield Environmental is located to the south of the site, the landfill is understood to accept wastes types including domestic and special.

At the time of the siteworks the site is covered by stockpiles of aggregates from the steelmaking process, which are being processed by a contractor. There are infrequent concrete structures including a large viewing

platform in the centre of the site, south of which are four buildings. With the exception of the viewing platform and the stockpiles the area is generally level and covered with aggregates of steel biproducts.

# 2.3 Site History

Based on a review of the documents in Section 2.1, the site was originally part of the Tees Estuary and comprised of sand. The site was reclaimed from the Tees between 1896 and 1938 by the assumed deposition of waste products from the steelmaking process. A number of small structures and a gun emplacement are shown on mapping from 1952 along with railway lines from 1959. The site is shown in its approximate current layout from 1991.

The site is understood to have been leased from Tata Steel to Harsco who undertook "recycling materials from iron and steelmaking for recovery of metals" under permit PP3338MTuntil 2020.

#### 2.4 UXO Assessment

Mapping indicates that the slag deposits were placed at the site prior to the Second World War. Due to the perceived risk of encountering unexploded ordnance (UXO) on site, a down hole magnetometer was used at all exploratory locations which involved drilling into natural superficial deposits. An explosive ordnance engineer reviewed the magnetometer readings as drilling progressed to identify any magnetic anomalies which might indicate the presence of buried ordnance. No anomalies were encountered but two have been encountered elsewhere on the Redcar site.

# 2.5 Geology

Review of the British Geological Survey (BGS) data suggests that the majority of the site is underlain by Tidal Flat Deposits predominantly comprising sand and clay This is anticipated to be underlain by Glaciolacustrine Deposits and Glacial Till based on data from historic boreholes in the vicinity of the MPA.

Bedrock beneath the site is anticipated to comprise Mercia Mudstone. Excerpts from the BGS mapping data are presented as Figure 2 below and in Appendix A.

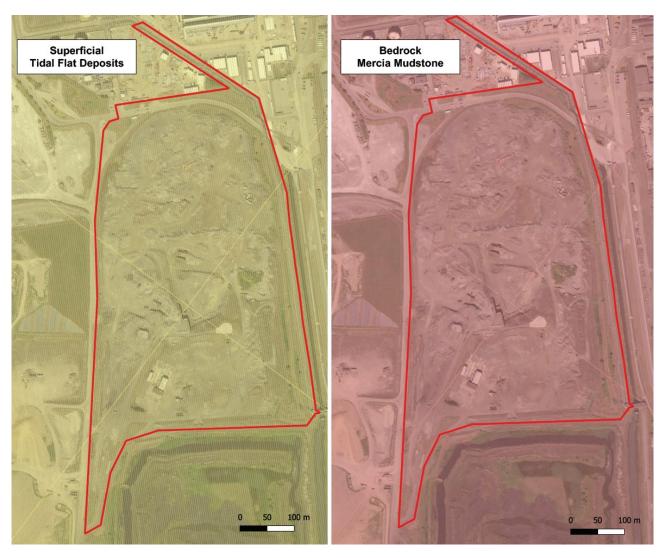



Figure 2: Excerpts from BGS Mapping

The following table provides an overview of the site-specific geology encountered during the investigation across the site. The full geology encountered is provided on the **draft** borehole logs within Appendix C.

| Interpreted<br>Unit                                | Minimum<br>Basal<br>Depth (m<br>bgl) | Maximum<br>Basal<br>Depth (m<br>bgl) | Comment                                                                                                                                                                                                                                                                             |
|----------------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Made Ground                                        | 5.3                                  | 9.3                                  | The Made Ground in all locations comprised slag rich deposits which contained close to 100% slag recovered as sandy gravel and cobbles. Slag was vesicular and noted to be predominantly grey but with green and brown colouration. The sand was noted to comprise of crushed slag. |
| Tidal Flat<br>Deposits<br>(Secondary A<br>Aquifer) | 5.8                                  | 14.7                                 | Encountered in all 9 boreholes. Generally comprised soft silty sand or sandy silt. Identified to be widely distributed across the site below the Made Ground.  The deposit was noted to be less than 1m thick in MPA_AUK_BH102, MPA_AUK_BH102 and MPA_AUK_BH106.                    |

| Interpreted<br>Unit                           | Minimum<br>Basal<br>Depth (m<br>bgl) | Maximum<br>Basal<br>Depth (m<br>bgl) | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glaciolacustrine<br>Deposits                  | 9.7                                  | 12.5                                 | Glaciolacustrine Deposits were recorded in 5 boreholes below the Tidal Flat Deposits.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (Unproductive strata)                         | 9.7                                  | 12.5                                 | The deposits were generally described as a soft to firm brown laminated clay.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Glacial Till<br>(Unproductive<br>strata)      | 10.45                                | 17.6                                 | Glacial Till was identified in all 9 boreholes below the Glaciolacustrine Deposits (if present) or Tidal Flat Deposits. Glacial Till was described as a firm to very stiff orange brown slightly sandy slightly gravelly clay, with gravel composed of mixed lithologies, including sandstone and mudstone. Glacial Till is distributed widely across the site overlying the bedrock.  The deposits were noted to be less than 1m thick in MPA_AUK_BH104, MPA_AUK_BH105, MPA_AUK_BH106 and MPA_AUK_BH109. |
| Mercia Mudstone<br>(Secondary (B)<br>Aquifer) | 13.2                                 | 20.7                                 | An extremely weak to weak red brown mudstone partially to highly weathered with numerous bands of white gypsum.                                                                                                                                                                                                                                                                                                                                                                                           |

Made Ground was encountered in all intrusive locations and proven to a thickness of up to 9.3m. The base of the Made Ground was proven in all 9 boreholes, however greater thickness of made ground material may exist beneath the site.

One type of Made Ground was noted:

Slag-dominant material: Generally ranging from gravel to boulder size fragments of slag. The slag
material generally ranged from light grey to dark grey/black in colour, but a wide range of other colours
were also noted including blue, brown, green, and purple. Discolouration of the slag surface was also
noted with white crystallisation/discolouration often noted on the outer surface along with occasional
iron rich areas. Slag is estimated to comprise 75 - 100% of the soil matrix, weighted towards the latter.

# 2.6 Hydrogeology

The site is not located within a Groundwater Source Protection Zone and given the proximity to the Tees Estuary groundwater is likely to be tidally influenced and potentially subject to saline intrusion.

#### Superficial Deposits

Groundwater levels recorded within the Made Ground and shallow superficial deposits (Tidal Flat Deposits and Glaciolacustrine Deposits) during the site investigation are shown in the table below and on Figure 3 in Appendix A. The Tidal Flat Deposits were noted continuous across the site but frequently were of limited thickness. It is therefore expected that although a Secondary (A) Aquifer is present regionally in the vicinity of the site the Tidal Flat Deposits are considered to be of limited resource value beneath the site itself, similar findings were noted on the Prairie site to the south indicating the aquifer may also be of limited resource value regionally (10035117-AUK-XX-XX-RP-ZZ-0088-01-Prairie\_Risk Assessment) .

Although groundwater may be present within the Glaciolacustrine Deposits this unit is classified as unproductive strata and is unlikely to be the source of significant transmission of groundwater. The Glacial Till is also classified as unproductive strata which may hold limited amounts of water but with very little transmissivity, as such no wells were screened across this unit.

| Borehole                                | Aquifer                        | fer 9 <sup>th</sup> Nov 2020 Visit 2  Groundwater Elevation (m AOD) (m AOD |         | Visit 3 Groundwater Elevation (m AOD) | Range in<br>Depth to<br>Groundwater<br>(m bgl) |  |  |  |
|-----------------------------------------|--------------------------------|----------------------------------------------------------------------------|---------|---------------------------------------|------------------------------------------------|--|--|--|
|                                         |                                | Superficial D                                                              | eposits |                                       |                                                |  |  |  |
| MPA_AUK_BH101S                          | Made Ground                    | 1.63                                                                       | TBC     | TBC                                   | 7.31                                           |  |  |  |
| MPA_AUK_BH101D                          | TDF                            | 1.60                                                                       | TBC     | TBC                                   | 7.34                                           |  |  |  |
| MPA_AUK_BH102S                          | Made Ground                    | 1.8                                                                        | TBC     | TBC                                   | 5.57                                           |  |  |  |
| MPA_AUK_BH103S                          | Made<br>Ground/TDF             | 2.49                                                                       | TBC     | TBC                                   | 4.21                                           |  |  |  |
| MPA_AUK_BH104S                          | Made Ground                    | TBC                                                                        | TBC     | TBC                                   | TBC                                            |  |  |  |
| MPA_AUK_BH104D                          | TDF                            | TBC                                                                        | TBC     | TBC                                   | TBC                                            |  |  |  |
| MPA_AUK_BH105S                          | Made Ground                    | TBC                                                                        | TBC     | TBC                                   | TBC                                            |  |  |  |
| MPA_AUK_BH106S                          | Made Ground                    | 1.7                                                                        | TBC     | TBC                                   | 5.81                                           |  |  |  |
| MPA_AUK_BH106M                          | GL                             | 1.7                                                                        | TBC     | TBC                                   | 5.81                                           |  |  |  |
| MPA_AUK_BH107S                          | Made Ground                    | 1.71                                                                       | TBC     | TBC                                   | 5.09                                           |  |  |  |
| MPA_AUK_BH107M                          | TDF                            | 1.68                                                                       | TBC     | TBC                                   | 5.12                                           |  |  |  |
| MPA_AUK_BH108S                          | Made Ground                    | 1.64                                                                       | TBC     | TBC                                   | 4.68                                           |  |  |  |
| MPA_AUK_BH108M                          | TDF                            | 1.6                                                                        | TBC     | TBC                                   | 4.72                                           |  |  |  |
| MPA_AUK_BH109S<br>and<br>MPA_AUK_BH109D | Not accessible during sampling |                                                                            |         |                                       |                                                |  |  |  |

Water was noted within the Made Ground, Tidal Flat Deposits and Glaciolacustrine although the latter geological unit is classified as unproductive strata. Groundwater flow within the Made Ground is indicated to the north to northwest. Groundwater flow within the Tidal Flat Deposits could not be confirmed based on the current elevation dataset but likely has a northerly component. The Tidal Flat Deposits are considered to be in hydraulic continuity with the Made Ground, within twin installations the resting groundwater level in the Made Ground was in some cases noted to be above that in the Tidal Flat Deposits. This may be linked to differences in porosity affecting the rate of response to tidal influence, and will be investigated further during subsequent monitoring visits.

#### **Bedrock**

The hydrogeological map for the area (Sheet 1: Hydrogeological Map of England and Wales, 1:625,000 scale) indicates that groundwater beneath the site within the Mercia Mudstone Formation is at an elevation of approximately 0m AOD with groundwater elevation contours indicating a flow to the north. Based on the thickness of the Tidal Flat Deposits identified at the site the Mercia Mudstone is considered the continuous water body present in significant thickness.

Groundwater levels recorded within the bedrock deposits during the site investigation are shown in the table below and on Figure 3 in Appendix A. The resting groundwater levels in the monitoring wells screened across

the Mercia Mudstone are noted to be above the slotted section of the well pipe indicating the phreatic surface rests above the upper surface of the mudstone itself. It was noted that the resting groundwater elevations within the Mercia Mudstone were recorded both below and marginally above (MPA\_AUK\_BH108) those in the Made Ground and Tidal Flat Deposits indicating the potential for downward vertical migration between the units where a downward head is present.

| Borehole       | Aquifer            | 9 <sup>th</sup> Nov 2020<br>Groundwater<br>Elevation<br>(m AOD) | 2020<br>Groundwater<br>Elevation<br>(m AOD) | 2020<br>Groundwater<br>Elevation<br>(m AOD) | Range in<br>Groundwater<br>Elevation (m<br>bgl) |
|----------------|--------------------|-----------------------------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------|
| MPA_AUK_BH102D | Mercia<br>Mudstone | 1.13                                                            | TBC                                         | TBC                                         | 6.24                                            |
| MPA_AUK_BH103D | Mercia<br>Mudstone | 1.35                                                            | TBC                                         | TBC                                         | 5.35                                            |
| MPA_AUK_BH105D | Mercia<br>Mudstone | TBC                                                             | TBC                                         | TBC                                         | TBC                                             |
| MPA_AUK_BH106D | Mercia<br>Mudstone | 1.61                                                            | TBC                                         | TBC                                         | 5.90                                            |
| MPA_AUK_BH107D | Mercia<br>Mudstone | 0.91                                                            | TBC                                         | TBC                                         | 5.89                                            |
| MPA_AUK_BH108D | Mercia<br>Mudstone | 1.65                                                            | TBC                                         | TBC                                         | 4.67                                            |

The elevation data did not indicate a clear flow direction within the Mercia Mudstone.

#### Summary

Water was noted to be variably present in Made Ground. The Tidal Flat Deposits are present continuously across the site but at a limited thickness and as such, water within the deposits is considered a limited resource value. Although unproductive strata, the site data indicates the potential for localised horizontal and vertical migration of groundwater within more permeable horizons of the Glaciolacustrine Deposits and is also inferred within Glacial Till deposits. Aquifer permeability testing of the subsurface geology is proposed during the next round of monitoring to quantify this further. The underlying bedrock of the Mercia Mudstone is considered the most sensitive aquifer unit at the site and shows an indicative flow direction to the north and the River Tees.

It should be noted the inferred flow directions within the bedrock, Superficial Deposits, and Made Ground are based on elevations from just a limited number of monitoring wells given the size of the site and may be influenced by local ground conditions. Two further elevation surveys are to be conducted to refine the assessment.

# 2.7 Slug Testing

Permeability testing of the aquifer was not complete at the time of report issue and will be included in an updated document.

### 2.8 Tidal Influence

Groundwater monitoring for potential tidal influence was not complete at the time of report issue and will be included in an updated document.

# 2.9 Aquifer Salinity

The salinity of the aquifers underlying the site has been calculated using concentrations of chloride (Cl<sup>-</sup>) measured in the groundwater samples collected assuming all chloride resulted from NaCl. The concentration of sodium chloride, the most abundant salt in marine waters, was calculated using these concentrations and used to determine whether the groundwater underlying the site was likely to be saline, brackish or fresh.

Equation

At 1 litre mass = concentration 
$$n_{(C\bar{l}\,)} = m_{(C\bar{l}\,)} \, / \, M_{(C\bar{l}\,)}$$
 Assume all free chloride results from NaCl therefore:  $n_{(NaCl)} = n_{(C\bar{l}\,)}$  Therefore  $m_{(NaCl)} = M_{(NaCl)} \, * \, n_{(NaCl)}$ 

Where 
$$n = no$$
. of moles

m = mass(g)

M = Molecular weight Molecular weight of sodium (Na) = 22.99

Molecular weight of chloride (CI) = 35.5

The results of the calculation are presented in the table below:

| Borehole         | Aquifer                      | Concentration<br>NaCl (mg/l)<br>10 -12 November<br>2020 |
|------------------|------------------------------|---------------------------------------------------------|
| MPA_AUK_BH101D   | Tidal Flat Deposits          | 1,055                                                   |
| MPA_AUK_BH102D   | Mercia Mudstone              | 6,594                                                   |
| MPA_AUK_BH103D   | Mercia Mudstone              | 577                                                     |
| MPA_AUK_BH104D   | Tidal Flat Deposits          | 2,473                                                   |
| MPA_AUK_BH105D   | Mercia Mudstone              | 4,121                                                   |
| MPA_AUK_BH106M   | Glaciolacustrine<br>Deposits | 544                                                     |
| MPA_AUK_BH106D   | Mercia Mudstone              | 577                                                     |
| MPA_AUK_BH107M   | Tidal Flat Deposits          | 4,286                                                   |
| MPA_AUK_BH107D   | Mercia Mudstone              | 2,308                                                   |
| MPA_AUK_BH108M   | Tidal Flat Deposits          | 758                                                     |
| MPA_AUK_BH108(D) | Mercia Mudstone              | 791                                                     |

Freshwater: <500 mg/l

Brackish Water: 500 to 30,000 mg/l Saline Water: 30,000 – 50,000 mg/l

All water samples recovered from the site are indicated to be brackish.

# 2.10 Hydrology

The closest surface water features to the site are the Cleveland Channel which forms the southern boundary of the site and the Lackenby Channel which is located approximately 40m to the east of the site. The Cleveland Channel flows into the Tees via the Lackenby Channel. Anecdotal data indicates both the Cleveland and Lackenby channels are tidally influenced.

The surface water features flow through an area that was reclaimed from the Tees Estuary by the placement of biproducts from the steel making process. The surface water features are considered to run within the Made Ground deposits and are likely in continuity with water within both the Made Ground and the Tidal Flat deposits. This will be confirmed by a further elevation survey conducted to refine the assessment.

#### 2.11 Potential Areas of Concern

Based on a review of the documents listed in Section 2.1 above and the DEFRA Magic Website <a href="https://magic.defra.gov.uk/MagicMap.aspx">https://magic.defra.gov.uk/MagicMap.aspx</a> accessed 17th November 2020 the following potential areas of concern in relation to land contamination (Environmental PAOC) have been identified for the site and are summarised on Figure 4 below and in Appendix A.



The significance of these potential sources is considered further in Section 3.2.

### 3 Environmental Site Condition Assessment

#### 3.1 Introduction

This section summarises the findings of Section 2 in the form of an environmental (land contamination) Conceptual Site Model (CSM).

The CSM allows a qualitative evaluation of potentially active "pollutant linkages" at the site; these being plausible scenarios whereby a contamination source is connected to a possible receptor by one or more pathways:

- Potential sources of contamination: these include any actual or potentially contaminating materials and activities, located either on or in the vicinity of the site;
- Potential pathways for contamination migration: these comprise the routes or mechanisms by which
  contaminants may migrate from the source to the receptor including environmental migration pathways
  and human health exposure pathways; and
- Potential receptors of contamination: these include present and/or future land users, ecological systems, water resources and property.

The potential significance of these source-pathway-receptor linkages will be assessed in the Section 4.

#### 3.2 Contamination Sources

Based on the information reviewed in this report the following potential contamination sources have been identified:

#### 3.2.1 On-Site

On-site sources have been identified associated with Made Ground and potential contaminants of concern (CoC) associated with former site uses. The table below summarises the most significant potential on-site sources and the primary contaminants associated with these sources. The identified CoC are considered to represent those likely to be present from other less significant sources.

| Potential On-Site sources              | Primary Contaminants                                                                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Made Ground including slag deposits    | Metals (including heavy metals), polycyclic aromatic hydrocarbons (PAHs), cyanide, thiocyanate, sulphate, pH, ammonia, and asbestos. |
|                                        | Potential source of ground gas if found to have a high organic content.                                                              |
| Substation                             | Hydrocarbons, asbestos, and polychlorinated biphenyls (PCBs)                                                                         |
| Buildings of unknown use               | Metals, and asbestos                                                                                                                 |
| Gun emplacement                        | Unexploded ordnance                                                                                                                  |
| Garage and maintenance workshop        | Metals, asbestos, TPH, PAH, acids and bases, VOCs, SVOCs, pH                                                                         |
| Slag crushing and metal cleaning plant | Metals (including heavy metals), cyanide, thiocyanate, sulphate, pH, and ammonia.                                                    |
| Railway lines and sidings              | Metals, asbestos, TPH, PAH, VOC, SVOC, PCB, and pH.                                                                                  |

#### 3.2.2 Off-Site

Potentially contaminative land uses have been identified in the vicinity of the site, the most pertinent of which are presented in the table with potentially associated contaminants:

| Potential On-Site sources                                                                                                                                                                              | Primary Contaminants                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Highfield Environmental                                                                                                                                                                                | Metals (including heavy metals), PAH, cyanide, thiocyanate, sulphate, pH, ammonia, asbestos, total petroleum hydrocarbons (TPH), volatile organic compounds (VOC), semi volatile organic compounds (SVOC), and ground gas.                                         |
| SLEMS / CLE9 – The SLEMS facility processes BOS Oxide. BOS material and other steelmaking biproducts are stockpiled on site. The SLEMS is understood to be located on top of the former CLE9 landfill. | Metals (including heavy metals), PAH, cyanide, thiocyanate, sulphate, pH, ammonia, asbestos, total petroleum hydrocarbons (TPH), volatile organic compounds (VOC), semi volatile organic compounds (SVOC), and ground gas if found to have a high organic content. |
| Former Oil Terminal and tanks                                                                                                                                                                          | Metals, asbestos, TPH, PAH, acids and bases, VOCs, SVOCs, pH and PCBs                                                                                                                                                                                              |
| PD Ports and Tarmac leasehold                                                                                                                                                                          | Metals, asbestos, TPH, PAH, acids and bases, VOCs, SVOCs, pH and PCBs                                                                                                                                                                                              |

Contaminants of concern in green are of generally low environmental mobility and have therefore been discounted for the sources in question based on the distance from the site.

#### 3.3 Contamination Sources Assessment

The contamination assessment will be undertaken in two ways – contaminants that are dependent upon the material composition (e.g. metals, inorganics, asbestos and PAHs) will be assessed separately for each material type and contaminants that are associated with a particular point source (e.g. hydrocarbons) will be assessed based on the likely source. This report is focused on deep soils and does not fully assess the potential risks associated with shallow soil. Groundwater and soil leachate testing was conducted to consider potential risk to Controlled Waters.

The laboratory certificates are presented in Appendix C.

#### 3.3.1 Made Ground

#### Asbestos

Asbestos was not identified in any of the samples tested, however asbestos fibres were identified by the shallow soils investigation, reference should be made to 10035117-AUK-XX-XX-RP-ZZ-0125-02-MPA\_Shallow\_Soils.

#### Metals and Inorganics

Metals that were identified in all of the soil samples included aluminium, arsenic, barium, boron, chromium, copper, iron, lead, magnesium, manganese, silicon, vanadium and zinc.

Levels of cyanide and thiocyanate were within the same order of magnitude as the method detection limit (MDL) where detected across the site, though more variation was noted in soluble sulphate concentrations. Soil samples were on average strongly alkaline ranging between pH 8.2 and 11.9.

Leachability testing showed the majority of metals were present in the leachate from made ground samples. Leached concentrations of metals were noted in all samples tested with barium, copper, magnesium and manganese leaching in all samples. The pH of leachate samples was noted to be slightly alkaline and slightly lower than the corresponding soil samples.

#### Polyaromatic Hydrocarbons

Concentrations of PAH were measured in 2 of the 8 soil samples analysed, and in all four samples of soil leachate; comprising a broad range of both light, mid and heavy end compounds.

#### Total Petroleum Hydrocarbons

Concentrations of TPH were measured in 1 of the 8 soil samples analysed at a concentration of 3000mg/kg (MPA\_AUK\_BH102\_SO\_0520).

Total petroleum hydrocarbons were not measured above the MDL in soil leachate.

#### Other Contaminants

No concentrations of VOC, SVOC, or PCBs considered as elevated were measured in any of the soil samples with the exception of carbazole, 2-Methylnaphthalene and dibenzofuran detected just above the MDL in MPA AUK BH102 SO 0520.

#### 3.3.2 Superficial Deposits

Concentrations of metals within the Superficial Deposits were measured in 4no. samples and were generally lower than those observed in Made Ground. Concentrations of asbestos, PAHs and TPH were all below the MDL.

#### 3.3.3 Groundwater

Five wells are screened across the Superficial Deposits, and six across the bedrock.

#### Metals and Inorganics

Metals were measured in all groundwater samples; metals boron, calcium, magnesium, manganese, sodium, and iron were measured at the highest concentrations and in all groundwater samples. Metals concentrations in the Superficial Deposits and bedrock were generally noted to be within the same order of magnitude.

Elevated levels of sulphate and chloride were measured in all samples. The pH of the groundwater in wells screened across natural deposits was neutral to slightly basic and ranged between pH7.4 and pH10.8 with the majority of the samples showing a pH<9.

#### **Organics**

Concentrations of TPH were below the MDL in all groundwater samples: Polycyclic aromatic hydrocarbons were the most frequent organic compounds detected measured in seven monitoring wells at levels just above the limit of detection.

Phenols were detected in five monitoring wells at concentrations ranging between  $140\mu g/I$  (MPA\_AUK\_BH104D) and  $680\mu g/I$  (MPA\_AUK\_BH102D). No VOC or SVOC were detected in any of the groundwater samples with the exception of a single detection of methylene chloride in MPA\_AUK\_BH107M at the MDL.

#### 3.3.4 Surface Water

Five surface water samples were collected from upstream and adjacent to the site, no downstream sample could be collected from the Lackenby Channel at the time of writing as the sample point lies on third party land and access could not be arranged. A summary of the data is presented in the table below, sample locations are shown on Figure 5 in Appendix A.

|                    |       | SLEMS_SW01                        | SLEMS_SW02                       | SLEMS_SW03                          | SLEMS_SW04                                                              | SLEMS_SW06                          |
|--------------------|-------|-----------------------------------|----------------------------------|-------------------------------------|-------------------------------------------------------------------------|-------------------------------------|
|                    | Units | Up Stream<br>Cleveland<br>Channel | Up Stream<br>Lackenby<br>Channel | Down Stream<br>Cleveland<br>Channel | Up Stream<br>Lackenby<br>Channel Down<br>stream<br>Cleveland<br>Channel | Down Stream<br>Cleveland<br>Channel |
| Arsenic, Dissolved | ug/l  | 3.7                               | 1.3                              | 2.3                                 | 1.7                                                                     | 1.8                                 |

|                          | Units | SLEMS_SW01  Up Stream Cleveland Channel | SLEMS_SW02  Up Stream Lackenby Channel | SLEMS_SW03  Down Stream Cleveland Channel | SLEMS_SW04  Up Stream Lackenby Channel Down stream Cleveland | SLEMS_SW06  Down Stream Cleveland Channel |
|--------------------------|-------|-----------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------------------------|-------------------------------------------|
| Barium, Dissolved        | ug/l  | 43                                      | 40                                     | 25                                        | Channel<br>31                                                | 32                                        |
| Boron, Dissolved         |       | 330                                     | 310                                    | 400                                       | 370                                                          | 310                                       |
|                          | ug/l  |                                         |                                        |                                           |                                                              |                                           |
| Cadmium, Dissolved       | ug/l  | 0.08                                    | 0.04                                   | < 0.03                                    | 0.03                                                         | 0.03                                      |
| Chromium, Dissolved      | ug/l  | 2.1                                     | 1.5                                    | 0.25                                      | 0.63                                                         | 0.47                                      |
| Copper, Dissolved        | ug/l  | 3.4                                     | 2.7                                    | 0.9                                       | 2.6                                                          | 2.9                                       |
| Iron, Dissolved          | ug/l  | 63                                      | 200                                    | 120                                       | 170                                                          | 130                                       |
| Lead, Dissolved          | ug/l  | 0.36                                    | 1.5                                    | 0.91                                      | 1.1                                                          | 0.77                                      |
| Manganese, Dissolved     | ug/l  | 120                                     | 71                                     | 110                                       | 120                                                          | 120                                       |
| Molybdenum, Dissolved    | ug/l  | 15                                      | 23                                     | 4.2                                       | 15                                                           | 17                                        |
| Nickel, Dissolved        | ug/l  | 2.6                                     | 6.3                                    | 1.8                                       | 8.6                                                          | 8.4                                       |
| Zinc, Dissolved          | ug/l  | 12                                      | 13                                     | 17                                        | 15                                                           | 13                                        |
| Ammoniacal Nitrogen as N | mg/l  | 0.14                                    | 0.11                                   | 0.088                                     | 0.22                                                         | < 0.015                                   |
| Sulphate as SO4          | mg/l  | 390                                     | 62                                     | 110                                       | 71                                                           | 71                                        |
| TPH Ali/Aro Total        | ug/l  | < 10                                    | 7000                                   | < 10                                      | 180                                                          | 420                                       |
| PAH Total                | ug/l  | 0.82                                    | < 0.80                                 | 0.48                                      | < 0.20                                                       | 0.58                                      |

#### Metals and Inorganics

Metals were measured in all groundwater samples; metals boron, magnesium, manganese, and iron were measured at the highest concentrations and in all groundwater samples. Metals concentrations were generally consistent within the same order of magnitude and no decrease in water quality was observed as the surface water features pass the south of the site.

#### **Organics**

Concentrations of TPH were measured in three surface water samples and appeared to be associated with the adjacent SLEMS site: Polycyclic aromatic hydrocarbons were measured in all surface water samples at levels just above the limit of detection. Concentrations of PAH did not indicate a decrease in water quality was observed as the surface water features pass the south of the site.

# 3.4 Pathways

Potential migration pathways based on a future commercial / industrial end use are discussed below.

#### 3.4.1 Airborne Migration Pathways

- The majority of the site is currently not formally surfaced, as such, particulate inhalation due to dust generation is a potentially active pathway if hardstanding or buildings are not present across the site in a future development scenario.
- Vapour inhalation pathways in relation to contaminants in soil and groundwater are potentially active, both for an exposure scenario in a future outdoor or indoor air space.
- During potential re-development works, sub-surface soils could be exposed at the surface due to trenching
  and or re-profiling requirements and therefore dust has the potential to be generated. Notwithstanding this,
  typical dust suppression techniques should be employed so that exposures would be minimised.
- Future migration and accumulation of permanent ground gases originating from the made ground on site in confined spaces leading to asphyxiation and/or explosion is considered potentially active.

### 3.4.2 Direct Contact Exposure Pathways

- The proposed site surfacing under any potential re-development scenario is unknown; should a significant
  portion of the site area remain uncovered or be covered in some form soft landscaping without a suitable
  depth of cover soils, dermal contact and ingestion pathways in relation to soil would be considered
  potentially active. Given the depth to groundwater (greater than 4.5m bgl, unless the final ground elevation
  is reduced significantly), direct contact pathways in relation to groundwater are not considered active.
- Direct contact pathways with soils could be active throughout a potential redevelopment; typical mitigation
  measures such as personal protective equipment (PPE; overalls, gloves etc.) could be used to mitigate this
  risk. If unexpected contamination (such as non-aqueous phase liquids (NAPL)) were identified during
  redevelopment works, additional PPE may be required as mitigation.

#### 3.4.3 Aqueous Migration Pathways

- Leaching of contaminants in the shallow soils to groundwater within the Tidal Flat Deposits is considered
  potentially active.
- The thickness of Glacial Till on-site between the Tidal Flat Deposits and the underlying Mercia Mudstone
  is not well delineated therefore the potential for vertical migration of contaminants to the underlying
  Secondary (B) Aquifer is considered potentially active.
- Given the granular nature of the identified and thickness of the Made Ground and the permeability of the
  Tidal Flat Deposits, lateral migration of off-site impacts onto the site from nearby PAOC is considered
  potentially active. The most likely source would be the SLEMS and Highfield Environmental waste facilities
  located hydraulically up gradient of the site.
- Lateral migration of on-site impacts towards the Cleveland and Lackenby watercourses is considered
  potentially active given the identified thickness and nature of the Made Ground. The potential for infiltration
  of CoC into watercourses via surface runoff or migration of rainfall through the made ground is considered
  potentially active.
- Lateral migration of on-site impacts towards the Cleveland and Lackenby watercourses via the Tidal Flat Deposits is considered potentially active.
- Lateral migration of on-site impacts off site in the Mercia Mudstone or Tidal Flat Deposits is considered potentially active.
- Depending on pile design for future structures, vertical migration of impacts down foundation piles is considered potentially active unless appropriately designed.

# 3.5 Receptors

The potential receptors to be considered in any contaminated land scenario can be summarised as follows:

#### 3.5.1 Human Health

For the purposes of this assessment it is assumed that the proposed development will comprise a commercial or industrial end use, and as such commercial and industrial workers are the primary receptor of concern for any chronic exposure contamination risk. The risk would be influenced by the duration and location of the staff work regimes.

Users of the adjacent buildings (industrial workers and neighbouring residents) could also be at risk. However, for exposure to occur, active cross-boundary migration pathways would be required, the assessment criteria for onsite human health receptors are considered to be sufficiently protective of offsite commercial land uses. It is noted that the current neighbouring residents are situated over 1km from the site, and as such are not considered to be at significant risk from the site.

#### 3.5.2 Property (buildings, etc)

The proposed development will include new structures and associated infrastructure, which could be subject to potential sulphate attack in relation to buried concrete. Given the presence of slag deposits within the Made Ground the potential for expansive slag to impact structures is considered potentially active, the risks from ground gas are also considered potentially active. It is understood that mitigation of risks to property will be the responsibility of the developer.

#### 3.5.3 Controlled Water

While groundwater is a Controlled Water, it is the classification of the aquifer within which the groundwater is present which drives the conclusion as to whether there is a potential water resource receptor present. At this site, the underlying geology comprises Tidal Flat Deposits which are classified as a Secondary (A) Aquifer and the Mercia Mudstone Formation classified as a Secondary (B) Aquifer both of which are considered groundwater receptors at the site. It is noted that the site is not located within a Source Protection Zone (SPZ) and no SPZ's have been identified within 1km of the site. Additionally, the site is not located in a drinking water protected area or a drinking water safeguard zone, and neither zone is present within 1km of the site. The site adjoins a tidal section of the River Tees and therefore there is the potential for saline intrusion into the underlying aquifers limiting their resource value, this is corroborated by the salinity data reported in section 2.9 which indicates groundwater to be brackish.

Surface water courses are also considered Controlled Water receptors; given its presence at the site boundary the Cleveland and Lackenby channels are considered the primary surface water receptor for the site.

### 3.5.4 Ecological

The Cleveland and Teesmouth Coast SSSI, SPA, and RAMSAR is located approximately 350m to the north of the site.

Based on the distance from the site the risk to ecological receptors is considered low. In addition, potential discharges from the site to the Teesmouth and Cleveland Coast SPA and RAMSAR via the River Tees are likely to be limited by tidal exchange and the large volume of the River Tees receiving water. This is in line with the findings of Wood 2019.

#### 3.6 Obstructions

This investigation did not encounter any obstructions within the exploratory holes drilled however it should be noted that obstructions may be encountered in areas not investigated.

#### 3.7 Ground Gas Assessment

A single ground gas monitoring event was conducted at the site, two further monitoring events are planned and will be reported under an updated cover. In monitoring well MPA\_AUK\_BH106M, MPA\_AUK\_BH107M and MPA\_AUK\_BH108M groundwater was resting above the top of the well slotted section indicating the data recorded is not representative of the shallow sub surface ground gas condition, this is expected as the monitoring well was designed to assess groundwater conditions within the superficial deposits rather than made ground.

Methane levels within the boreholes were recorded to be <0.1% in all monitoring wells. Carbon dioxide levels within the boreholes were recorded between <0.1% and 0.3%, with the highest concentration being recorded within MPA\_AUK\_BH107M.

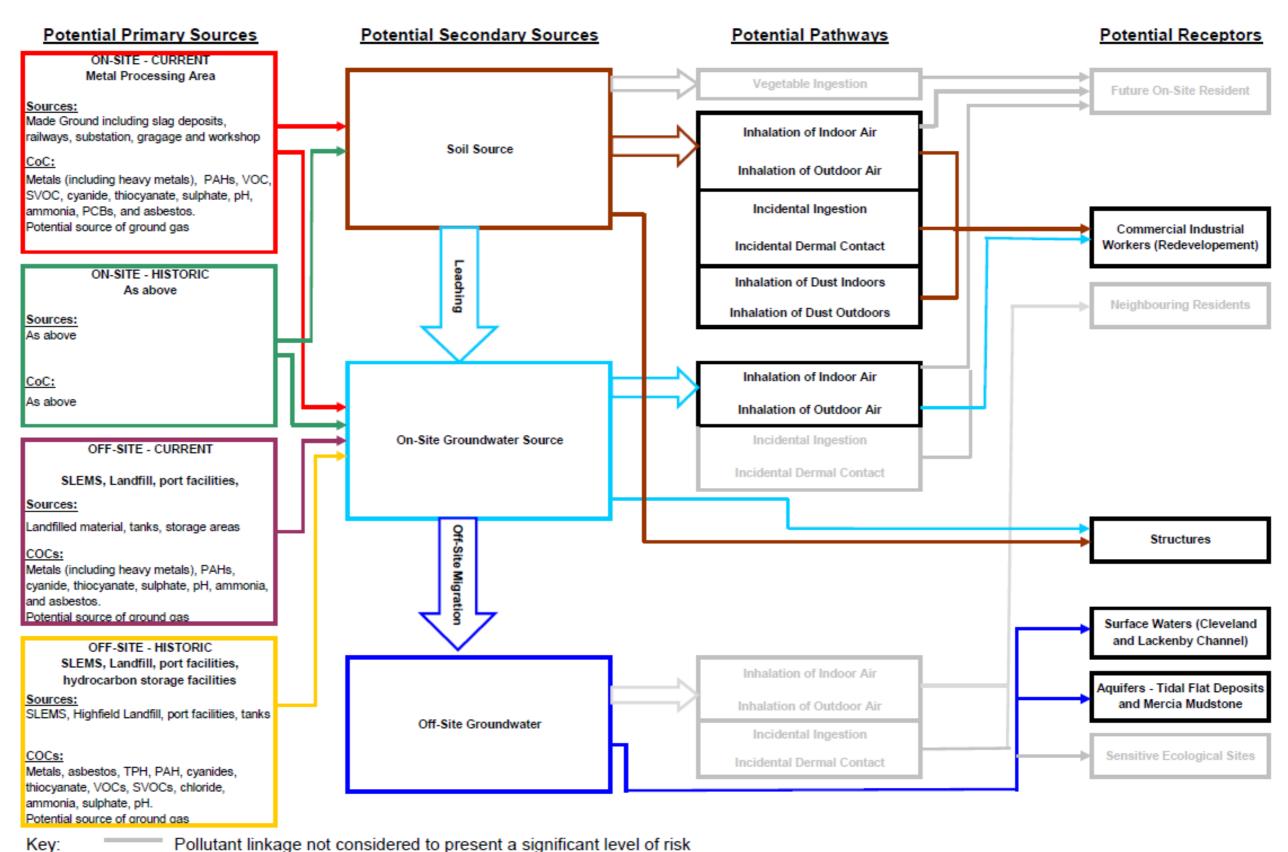
Hydrogen sulphide was recorded below the detection limit on all occasions and carbon monoxide was recorded at the detection limit in three locations and at 5ppm in MPA\_AUK\_BH101S.

Flow rates were observed to range between 0.0l/hr and 0.1l/hr.

Given the proposed remedial strategy for the site (10035117-AUK-XX-XX-RP-ZZ-0181-MPA\_ROA and Strategy) comprising the excavation processing and replacement of a significant proportion of the made ground, further monitoring is recommended once this is complete based on the specific requirements of a particular redevelopment.

# 3.8 Slag Testing Data

A total of 5 samples of slag recovered from trial pits from the shallow soils investigation were submitted for examination the results are presented in AEG 2020 and summarised below.


| Sample        | Depth | AEG Estimated<br>% Slag |
|---------------|-------|-------------------------|
| MPA_AUK_TP101 | 1.9   | 100%                    |
| MPA_AUK_TP107 | 1.5   | 100%                    |
| MPA_AUK_TP119 | 2.0   | 100%                    |
| MPA_AUK_TP120 | 3.8   | 100%                    |
| MPA_AUK_TP122 | 3.8   | 100%                    |

- In three of the 5 samples blast furnace slag was a dominant constituent, the remaining two samples
  contained very small quantities of blast furnace slag but basic steel slag was a dominant constituent
  in these samples.
- Very small quantities of basic refractory materials were noted in the one slag sample.
- Three samples were subject to 28 day expansion tests and showed expansions between 0.29% and 0.9%.
- None of the samples tested contained traces of Ettringite indicating expansion has not occurred in the past.
- Two of the samples tested contained free CaO and MgO up to 1.4% and 0.9% respectively.
- The composition of the slags indicate a low-medium expansion potential.

# 3.9 Conceptual Site Model

The above data has been used to produce an initial CSM (based on chronic exposure pathways) for the site, this is presented below as Figure 6. The assessment of risk to on site commercial works is considered sufficiently conservative to protect off site commercial workers.

Figure 6
Outline Conceptual Site Model - Commercial Industrial End Use



# 4 Generic Quantitative Risk Assessment

# 4.1 Tiered Approach

The purpose of this assessment is to quantify potential risks to the human health, controlled waters and future built receptors identified in the CSM in relation to the redevelopment of the site for a generic commercial/industrial use.

The following scenarios are not considered in this section:

- Risks to Construction Workers any redevelopment and construction work should be conducted in full recognition of HS(G)66.
- Nuisance health effects the Statutory Nuisance Act considered olfactory impacts from odours and allows comparison of enclosed space air concentrations with odour threshold concentrations.
- An assessment of the geotechnical development constraints which is outside the scope of this
  document.

Quantitative assessment of risks arising from soil and groundwater contamination are assessed in accordance with the framework presented in Contaminated Land Report 11 (CLR 11) (EA, 2004) and Land Contamination: Risk Management (LC:RM) (EA, 2020). This sets out a tiered approach to quantitative risk assessment comprising:

- Generic Quantitative Risk Assessment (GQRA) Comparison of site contaminant levels against generic standards and compliance criteria including an assessment of risk using a source-pathwayreceptor model.
- Detailed Quantitative Risk Assessment (DQRA) Derivation of site-specific risk assessment criteria and calculation of site specific clean-up goals.

In this report, a GQRA has been carried out. The potential pollutant linkages identified in the preliminary CSM for human health and controlled water receptors have been assessed by comparison against relevant generic assessment criteria (GAC). These have been derived using conservative assumptions to enable potential pollutant pathways that do not pose unacceptable risks to receptors to be identified and discounted. Exceedance of a GAC does not imply that an unacceptable risk is necessarily present, rather that further assessment may be required to verify the potential risk.

It is assumed that the site will be redeveloped as a typical commercial industrial development comprising office buildings, hardstanding and some areas of soft landscaping. The site has not been zoned at this stage and all data has been considered on an individual sample basis.

#### 4.2 Human Health Risks

#### 4.2.1 Selection of Soil GAC

Potentially active pollutant linkages and contaminants of concern (CoC) in relation to human health risks have been identified in the initial CSM as:

- A. Vapour inhalation of indoor and outdoor air from volatile contaminants in soils, (potential CoC include volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs))
- B. Vapour inhalation of indoor and outdoor air from volatile contaminants in groundwater, (potential CoC include VOCs and SVOCs)
- C. Dermal contact/ingestion of soil (potential CoC include heavy metals, organic/inorganic compounds)
- D. Dust inhalation (potential CoC include asbestos, volatiles, and heavy metals)

For the purposes of this assessment it is assumed that future re-development will comprise a commercial or industrial end use and, as such, commercial and industrial workers are the primary receptor of concern for any contamination risk. The risk would be influenced by the duration and location of the staff work regimes. For the basis of this assessment, it is assumed that site workers will be on-site for a "standard" 8 hour working day.

Commercial end use assumes a pre-1970s commercial property is present at the site with some open areas uncovered by hardstanding and is therefore regarded as conservative for a redevelopment scenario as new structures are assumed to be constructed to current standards.

To assess potential linkages A, C and D above, GAC have been chosen, based on an assumed industrial/commercial end use. Criteria published by authoritative industry bodies and commonly accepted by regulators for use under the planning regime for development sites have been used first. For contaminants for which no published values are available, Arcadis derived criteria (developed following the CLEA framework (v1.07)) or foreign national criteria have been used.

The GAC comprise (in order of priority):

- LQM/CIEH Suitable for Use Levels (S4UL) (LQM / CIEH, 2015),
- Department of Environment Food and Rural Affairs (DEFRA) Category 4 Screening Levels (C4SL) (DEFRA, 2012),
- Arcadis derived generic assessment criteria based on CLEA v1.07,
- United States Environmental Protection Agency (U.S. EPA) Regional Screening Levels (RSLs) (USEPA, 2018)

Soil organic matter recorded in 12No. soil samples obtained from the site ranged from 0.2 to 4.1 % SOM. As such, the S4UL selected as GAC are those for a commercial end use assuming 1% SOM.

It is noted that the USEPA RSLs do not consider the risk to human health via the inhalation of vapour pathway. As such, should concentrations of volatile or semi-volatile CoC be measured above MDL for which only a USEPA RSL GAC is available, further consideration may need to be given to the risk to human health from inhalation of vapours.

The selected human health GAC for soil are presented in Appendix D:

#### 4.2.2 Soil Risk Assessment

Contaminant concentrations in soil samples have been compared with the soil GAC in Appendix D. Contaminants which were measured in excess of the GAC are summarised below. Contaminants that have not been identified in excess of their respective GAC are not considered to represent a significant risk to identified human health receptors and as such do not require further assessment in relation to the redevelopment of the site unless the above assumptions are not valid.

The following samples were analysed:

- 8 No. samples of slag-dominated Made Ground
- 4 No. samples of superficial deposits (Tidal Flat Deposits and Glaciolacustrine Deposits)

None of concentrations of CoC measured in the 12 soils samples were in excess of the soil GAC for the contaminants for which screening criteria are available, therefore there is not considered to be a significant risk to human health from these measured concentrations of CoC in deep soils. The maximum recorded concentrations in soil for all contaminants are listed in Appendix D.

Contaminants for which no screening criteria were available have been reviewed. Most contaminants, including polychlorinated biphenyls (PCBs) and VOCs were recorded below the method detection limit (MDL) in all soil samples.

Contaminants measured in soil at concentrations above MDL, for which no screening criteria were available were aluminium, iron, magnesium, manganese, silicon, total cyanide, sulphate, and carbazole. Potential human health risks from these are qualitatively assessed in Section 4.2.4.

#### 4.2.3 Asbestos in Soil

A total of 12No. soils samples were screened by polarised light microscopy in accordance with HSG248 for the presence of asbestos (HSE, 2005). None of the samples measured the presence of asbestos and therefore the pollutant linkage D (dust inhalation) is considered to be inactive with respect to asbestos in deep soils.

#### 4.2.4 Qualitative Risk Assessment for Substances in Soil without GACs

As shown in Appendix D, several contaminants including some PCBs, VOCs and SVOCs do not have a GAC available, but were recorded at less than the MDL in all soil samples. Based on a review of the MDLs, these are not considered to pose a significant risk to human health and are likely to indicate an absence of that contaminant group on the site, especially given the relatively low MDLs obtained.

The following were recorded at concentrations in excess of their MDL and with no readily available GAC identified for comparison: aluminium, iron, magnesium, manganese, silicon, total cyanide, sulphate, and carbazole. With the exception of total cyanide, and carbazole, these are all elements present naturally in soil and some are biologically required nutrients. They may be elevated above natural levels where slag and other steelmaking wastes are incorporated into soil due to the site's former use, particularly manganese and iron. However, regardless of these elevations, their typically low toxicity is likely to mean these occurrences present a low risk of adverse harm to the development.

Total cyanide is known to be less toxic than free cyanide. When compared to the Arcadis site specific assessment criteria for free cyanide derived for the Prairie site (10035117-AUK-XX-XX-RP-ZZ-0088-01-Prairie\_Risk Assessment), the concentrations of total cyanide are not in excess. As such, the measured concentrations of total cyanide are not considered to represent a significant risk to human health receptors.

The SVOCs carbazole was detected slightly above the MDL in one sample. This is indicative of incomplete combustion products and therefore consistent with the presence of steelmaking wastes. The compound is just marginally above the MDL. Given that the single concentration of carbozole measured at such a low concentration in comparison to the GACs for other SVOCs, the risk to human health from concentrations of carbozole is also considered to be low.

Other effects, such as phytotoxicity, are not assessed as the Made Ground encountered at the site is likely to be unsuitable as a growing medium and some form of capping with "clean" soil is likely to be incorporated into any future development.

#### 4.2.5 Selection of Groundwater GAC

To assess the potential risk to human health via pollutant linkage B above (inhalation of volatile contaminants in groundwater), inhalation GAC have been derived by Arcadis for volatile contaminants in groundwater.

These have been derived by Arcadis using the CLEA process and industry standard vapour transport modelling (Johnson & Ettinger model). The same assumptions relating to a commercial end use of the site have been included in the model and an on-site commercial worker has been considered as the receptor which should be protective of off-site commercial workers as well.

The inhalation GAC are listed in Appendix F.

#### 4.2.6 Groundwater Risk Assessment

Concentrations of volatile contaminants in 11 groundwater samples were screened against the inhalation GAC described above (where GAC have been derived).

The vapour inhalation GAC are designed to determine whether there is a significant risk of harm to human health from inhaling volatile contaminants emanating from groundwater beneath the site (potential pollutant linkage B in the preliminary CSM in Section 4.2).

None of the concentrations of volatile contaminants measured in groundwater were in excess of the inhalation GAC for on-site commercial workers. As such, the risk to human health from measured concentrations of CoC in groundwater is not considered to be significant.

Methylene chloride, a volatile contaminant for which no GAC is readily available, was measured at the MDL. The risk to human health from this contaminant will be considered further in Section 4.2.7.

#### 4.2.7 Qualitative Risk Assessment for Substances in Groundwater Without GAC

As shown in Appendix F, several contaminants including some metals and VOCs do not have a GAC available. Many were not measured above MDL in groundwater. Based on a review of the MDLs, these are not considered to pose a significant risk, especially given the relatively low MDLs obtained.

Methylene chloride did not have a GAC and was recorded in one groundwater sample however the contaminant was measured at the MDL and as such is not considered to represent a significant risk to human health.

#### 4.2.8 Discussion

None of the potential contaminants of concern analysed in the soil or groundwater samples were in excess of available GAC protective of human health via potential pollutant linkages in Section 4.2.2 above. On the basis of the data collected, these linkages are not considered active for deep soils and are unlikely to pose a significant risk to human health.

Acute risks to construction workers arising from short-term contact with contaminated soils during demolition and redevelopment of the site are not assessed by the chronic risk assessment methods in this report. During construction works, site workers should remain vigilant to the possible risk of encountering isolated areas of contaminated material. Should potentially contaminated material be encountered, further testing may be required to assess the risk to health and safety of the site workers and the environment. All persons engaged in site construction works should be made aware of the findings of the intrusive investigation and the hazards associated with handling potentially contaminated materials. It is recommended that all works are conducted in accordance with the Health and Safety Executive publication entitled "Protection of Workers and the General Public during the Development of Contaminated Land" (HSE, 1991).

#### 4.3 Risks to Controlled Waters

#### 4.3.1 Selection of GAC

Potentially active pollutant linkages in relation to Controlled Waters have been identified in the initial CSM as:

- 1) Leaching of CoC from Made Ground to groundwater in Tidal Flat Deposits
- 2) Vertical Migration of CoC to the Mercia Mudstone
- 3) Horizontal Migration of contaminated groundwater to the Cleveland and Lackenby Channel watercourses in either Made Ground or the Tidal Flat Deposits.
- 4) Migration of CoC in groundwater onto site from off-site sources
- 5) Migration of CoC in groundwater off site in the Tidal Flat Deposits and Mercia Mudstone.

An assessment of the potential for soluble contaminants in the Made Ground and slag on the site to impact the Controlled Waters receptors identified in the CSM (on-site surface water and underlying Secondary Aquifers (Tidal Flat Deposits and Mercia Mudstone)) has been undertaken.

Concentrations of leachable contaminants from soil leaching tests and groundwater samples have been compared to adopted Water Quality Standards (WQS).

The WQS chosen are UK Drinking Water Standards (DWS) protective of aquifer water resources, and Environmental Quality Standards (EQS) considered protective of surface waterbody quality. The EQS are for saline waters protective of the Tees Estuary receptor. The WQS are listed in Appendix E, F and G.

#### 4.3.2 Soil Leachate

The results of 14No. soil leachate tests were compared to the WQS as shown in Appendix E. Contaminant concentrations that exceeded the WQS are shown in the table below. All of the samples were slag-dominated Made Ground. Samples tested were taken across the site from depths ranging from 0.6 m to 6m bgl and

includes those collected as part of the shallow soils investigation 10035117-AUK-XX-XX-RP-ZZ-0125-02-MPA\_Shallow\_Soils.

| Contaminant | Unit     | No. Samples Exceeding | WQS Ex | ceeded  | Sample                | Concentration |
|-------------|----------|-----------------------|--------|---------|-----------------------|---------------|
| Arsenic     | μg/l     | 1/14                  | DWS    | 10      | MPA_AUK_TP124_SO_0080 | 23            |
| Cadmium     | μg/l     | 1/14                  | EQS    | 0.2     | MPA_AUK_BH107_SO_0600 | 0.21          |
|             |          |                       |        |         | MPA_AUK_BH107_SO_0600 | 4             |
|             |          |                       |        |         | MPA_AUK_BH106_SO_0510 | 4.7           |
|             |          |                       |        |         | MPA_AUK_TP103_SO_0080 | 12            |
|             |          |                       |        |         | MPA_AUK_TP108_SO_0100 | 9             |
| Connor      | ug/l     | 10/14                 | EQS    | 3.76    | MPA_AUK_TP115_SO_0060 | 4.1           |
| Copper      | μg/l     | 10/14                 | EQS    | 3.76    | MPA_AUK_TP111_SO_0120 | 13            |
|             |          |                       |        |         | MPA_AUK_TP117_SO_0060 | 7.4           |
|             |          |                       |        |         | MPA_AUK_TP119_SO_0100 | 9.9           |
|             |          |                       |        |         | MPA_AUK_TP121_SO_0080 | 9.7           |
|             |          |                       |        |         | MPA_AUK_TP123_SO_0100 | 6.6           |
|             | μg/l     | 6/14                  | EQS    | 1.3     | MPA_AUK_BH107_SO_0600 | 1.7           |
|             |          |                       |        |         | MPA_AUK_TP103_SO_0080 | 2.2           |
| Land        |          |                       |        |         | MPA_AUK_TP111_SO_0120 | 11            |
| Lead        |          |                       |        |         | MPA_AUK_TP121_SO_0080 | 61            |
|             |          |                       |        |         | MPA_AUK_TP123_SO_0100 | 2.2           |
|             |          |                       |        |         | MPA_AUK_TP124_SO_0080 | 2.6           |
| Zinc        | μg/l     | 1/14                  | EQS    | 7.9     | MPA_AUK_BH106_SO_0510 | 240           |
| Mercury     | μg/l     | 1/14                  | EQS    | 0.07    | MPA_AUK_TP117_SO_0060 | 0.07          |
| Molybdenum  | μg/l     | 1/14                  | DWS    | 70      | MPA_AUK_TP121_SO_0080 | 95            |
|             |          |                       |        |         | MPA_AUK_BH105_SO_0500 | 9.2           |
|             |          |                       |        |         | MPA_AUK_TP103_SO_0080 | 11.3          |
|             |          |                       |        |         | MPA_AUK_TP108_SO_0100 | 11.8          |
|             |          |                       |        |         | MPA_AUK_TP106_SO_0100 | 9.6           |
| рН          | pH units | 9/14                  | EQS    | 6 – 8.5 | MPA_AUK_TP111_SO_0120 | 12.3          |
|             |          |                       |        |         | MPA_AUK_TP115_SO_0060 | 11.9          |
|             |          |                       |        |         | MPA_AUK_TP117_SO_0060 | 11.4          |
|             |          |                       |        |         | MPA_AUK_TP121_SO_0080 | 12.2          |
|             |          |                       |        |         | MPA_AUK_TP123_SO_0100 | 11.3          |

| Contaminant             | Unit | No. Samples Exceeding | WQS Exceeded |                  | Sample                                                                                                                                                                                                                      | Concentration                                                       |
|-------------------------|------|-----------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Naphthalene             | μg/l | 1/14                  | EQS<br>DWS   | 2                | MPA_AUK_TP123_SO_0100                                                                                                                                                                                                       | 85                                                                  |
| Anthracene              | μg/l | 2/14                  | EQS          | 0.1              | MPA_AUK_TP106_SO_0100<br>MPA_AUK_TP123_SO_0100                                                                                                                                                                              | 0.46                                                                |
| Fluoranthene            | μg/l | 10/14                 | EQS          | 0.0063           | MPA_AUK_BH105_SO_0500 MPA_AUK_TP103_SO_0080 MPA_AUK_TP106_SO_0100 MPA_AUK_TP111_SO_0120 MPA_AUK_TP115_SO_0060 MPA_AUK_TP117_SO_0060 MPA_AUK_TP119_SO_0100 MPA_AUK_TP119_SO_0100 MPA_AUK_TP121_SO_0080 MPA_AUK_TP123_SO_0100 | 0.02<br>0.01<br>2.5<br>0.01<br>0.09<br>0.02<br>0.54<br>0.01<br>0.07 |
| Benzo(b)fluoranthene    | μg/l | 5/14                  | EQS<br>DWS   | 0.017            | MPA_AUK_TP124_SO_0080  MPA_AUK_TP106_SO_0100  MPA_AUK_TP115_SO_0060  MPA_AUK_TP119_SO_0100  MPA_AUK_TP123_SO_0100  MPA_AUK_TP124_SO_0080                                                                                    | 0.04<br>3.3<br>0.05<br>0.02<br>0.03<br>0.01                         |
| Benzo(a)pyrene          | μg/l | 5/14                  | EQS<br>DWS   | 0.017            | MPA_AUK_TP106_SO_0100 MPA_AUK_TP115_SO_0060 MPA_AUK_TP119_SO_0100 MPA_AUK_TP123_SO_0100 MPA_AUK_TP124_SO_0080                                                                                                               | 1.0<br>0.74<br>0.24<br>0.03<br>0.01                                 |
| Indeno(1,2,3-c,d)pyrene | μg/l | 3/14                  | DWS          | 0.025            | MPA_AUK_TP106_SO_0100<br>MPA_AUK_TP115_SO_0060<br>MPA_AUK_TP119_SO_0100                                                                                                                                                     | 2.1<br>0.03<br>0.4                                                  |
| Benzo(g,h,i)perylene    | µg/l | 6/14                  | EQS<br>DWS   | 0.00082<br>0.025 | MPA_AUK_TP106_SO_0100 MPA_AUK_TP115_SO_0060 MPA_AUK_TP117_SO_0060 MPA_AUK_TP119_SO_0100 MPA_AUK_TP123_SO_0100 MPA_AUK_TP124_SO_0080                                                                                         | 2.2<br>0.04<br>0.02<br>0.5<br>0.01<br>0.02                          |

An exceedance of the EQS for seven metals and six PAH were recorded.

As the WQS are protective of water quality within the receptor (the water body for EQS or the customer's tap for DWS); direct comparison with soil leachate results is a conservative assessment as it does not take into account dilution and attenuation along the pathway.

The EQS for copper is based on the bioavailable fraction which is likely to be less than the total dissolved concentrations recorded in the results. As not all the copper is likely to be bioavailable the EQS can therefore be regarded as conservative.

Concentrations of CoC measured above MDL for which no GAC was readily available are qualitatively assessed in Section 4.3.3. Discussion of the concentrations of CoC measured in leachate which are in excess of WQS is included in Section 4.3.4.

#### 4.3.3 Groundwater

Eleven groundwater samples were obtained from monitoring wells and analysed for a range of contaminants (MPA\_AUK\_BH109 could not be accessed during the monitoring visit). The monitoring wells screen subsurface geology as shown in the table below.

| Borehole       | Aquifer                   |
|----------------|---------------------------|
| MPA_AUK_BH101D | Tidal Flat Deposits       |
| MPA-AUK_BH102D | Mercia Mudstone           |
| MPA_AUK_BH103D | Mercia Mudstone           |
| MPA-AUK_BH104D | Tidal Flat Deposits       |
| MPA_AUK_BH105D | Mercia Mudstone           |
| MPA-AUK_BH106M | Glaciolacustrine Deposits |
| MPA_AUK_BH106D | Mercia Mudstone           |
| MPA-AUK_BH107M | Tidal Flat Deposits       |
| MPA_AUK_BH107D | Mercia Mudstone           |
| MPA-AUK_BH108M | Tidal Flat Deposits       |
| MPA_AUK_BH108D | Mercia Mudstone           |

Contaminant concentrations were compared to the WQS in Appendix F and exceedances are summarised below.

| Contaminant | Unit | No. Samples<br>Exceeding | WQS Exceeded |       | Sample         | Concentration (µg/I) |
|-------------|------|--------------------------|--------------|-------|----------------|----------------------|
|             |      | g/l 6 / 11               | DWS          | 700   | MPA_AUK_BH101D | 1,500                |
|             |      |                          |              |       | MPA_AUK_BH103D | 2,200                |
| D           |      |                          |              |       | MPA_AUK_BH106M | 1,900                |
| Boron       | µg/l |                          |              |       | MPA_AUK_BH106D | 1,900                |
|             |      |                          |              |       | MPA_AUK_BH108S | 1,100                |
|             |      |                          |              |       | MPA_AUK_BH108D | 4,500                |
| Iron        | μg/l | 1 / 11                   | EQS          | 1,000 | MPA_AUK_BH106D | 1,400                |

| Contaminant          | Unit | No. Samples Exceeding | WQS Exceeded |           | Sample         | Concentration (µg/I) |
|----------------------|------|-----------------------|--------------|-----------|----------------|----------------------|
|                      |      |                       | DWS          | 200       |                |                      |
| Lead                 | μg/l | 1 / 11                | EQS          | 1.3       | MPA_AUK_BH106D | 1.4                  |
|                      |      |                       |              |           | MPA_AUK_BH102D | 1,200                |
|                      |      |                       |              |           | MPA_AUK_BH103D | 51                   |
|                      |      |                       |              |           | MPA_AUK_BH104D | 250                  |
|                      |      |                       |              |           | MPA_AUK_BH105D | 270                  |
| Manganese            | μg/l | 9 / 11                | DWS          | 50        | MPA_AUK_BH106M | 270                  |
|                      |      |                       |              |           | MPA_AUK_BH106D | 380                  |
|                      |      |                       |              |           | MPA_AUK_BH107M | 580                  |
|                      |      |                       |              |           | MPA_AUK_BH107D | 160                  |
|                      |      |                       |              |           | MPA_AUK_BH108S | 200                  |
|                      |      |                       |              |           | MPA_AUK_BH101D | 10.8                 |
|                      |      | 7 / 11                | EQS          | 6.0 – 8.5 | MPA_AUK_BH103D | 8.9                  |
|                      |      |                       |              |           | MPA_AUK_BH104D | 8.9                  |
| рН                   |      |                       |              |           | MPA_AUK_BH106M | 8.7                  |
|                      |      |                       |              |           | MPA_AUK_BH106D | 8.8                  |
|                      |      |                       |              |           | MPA_AUK_BH108S | 9.0                  |
|                      |      |                       |              |           | MPA_AUK_BH108D | 9.6                  |
|                      |      |                       |              |           | MPA_AUK_BH102D | 1.9                  |
|                      |      |                       |              |           | MPA_AUK_BH104D | 1.5                  |
|                      |      | 6 / 11                | DWS          |           | MPA_AUK_BH105D | 1.2                  |
| Ammoniacal Nitrogen* | µg/l |                       |              | 0.5       | MPA_AUK_BH107M | 1.8                  |
|                      |      |                       |              |           | MPA_AUK_BH107D | 0.78                 |
|                      |      |                       |              |           | MPA_AUK_BH108S | 0.83                 |
|                      |      |                       |              |           | PA_AUK_BH102D  | 680                  |
|                      |      |                       | F00          | 50        | MPA_AUK_BH104D | 140                  |
| Phenol - monohydric  | µg/l | 5/11                  | EQS          | 50        | MPA_AUK_BH105D | 320                  |
|                      |      |                       | DWS          | 10        | MPA_AUK_BH107M | 300                  |
|                      |      |                       |              |           | MPA_AUK_BH107D | 160                  |
|                      |      |                       |              |           | MPA_AUK_BH101D | 0.02                 |
|                      |      |                       |              |           | MPA_AUK_BH103D | 0.01                 |
| E                    |      | 0.144                 | F00          | 0.0000    | MPA_AUK_BH104D | 0.04                 |
| Fluoranthene         | µg/l | 6 / 11                | EQS          | 0.0063    | MPA_AUK_BH105D | 0.22                 |
|                      |      |                       |              |           | MPA_AUK_BH106M | 0.02                 |
|                      |      |                       |              |           | MPA_AUK_BH106D | 0.05                 |

| Contaminant             | Unit | No. Samples<br>Exceeding | WQS Exceeded   |                  | Sample                                         | Concentration (μg/l) |
|-------------------------|------|--------------------------|----------------|------------------|------------------------------------------------|----------------------|
| Benzo(b)fluoranthene    | µg/l | 2/11                     | DWS<br>EQS     | 0.025<br>0.017   | MPA_AUK_BH104D MPA_AUK_BH105D                  | 0.02<br>0.14         |
| Benzo(k)fluoranthene    | µg/l | 1/11                     | DWS<br>EQS     | 0.025<br>0.017   | MPA_AUK_BH105D                                 | 0.06                 |
| Benzo(a)pyrene          | µg/l | 30/11                    | EQS and<br>DWS | 0.027<br>0.01    | MPA_AUK_BH103D  MPA_AUK_BH104D  MPA_AUK_BH105D | 0.01<br>0.01<br>0.09 |
| Indeno(1,2,3-c,d)pyrene | μg/l | 3/11                     | DWS            | 0.025            | MPA_AUK_BH105D                                 | 0.11                 |
| Benzo(g,h,i)perylene    | µg/l | 3/11                     | EQS<br>DWS     | 0.00082<br>0.025 | MPA_AUK_BH103D  MPA_AUK_BH104D  MPA_AUK_BH105D | 0.01<br>0.01<br>0.09 |

<sup>\*</sup> DWS for Ammoniacal Nitrogen is for Ammonium as NH<sub>4</sub>.

Concentrations of boron and manganese and ammoniacal nitrogen have been measured in excess of WQS in more than half of the water samples collected from the site. Concentrations of other heavy metals, phenol, and PAHs were also measured in excess of WQS. It is noted that the groundwater pH is neutral to slightly basic.

#### 4.3.4 Surface water

Surface water monitoring was completed co-located with the sediment sampling and the results are presented in Appendix C. Measured concentrations were compared to the WQS as shown in Appendix G.

Contaminant concentrations that exceeded the WQS are shown in the table below.

| Contaminant           | Unit | No. Samples<br>Exceeding | WQS Exceeded |      | Sample                                                                                                | Concentration                  |
|-----------------------|------|--------------------------|--------------|------|-------------------------------------------------------------------------------------------------------|--------------------------------|
| Cadmium               | µg/l | 4/6                      | EQS          | 0.2  | SLEMS_SW01_200720<br>SLEMS_SW02_200720<br>SLEMS_SW04_200720                                           | 0.08<br>0.08<br>0.03           |
| Chromium (hexavalent) | μg/l | 1/6                      | EQS          | 0.6  | SLEMS_SW02_200720                                                                                     | 8.6                            |
| Copper                | µg/l | 1/6                      | EQS          | 3.76 | SLEMS_SW05_200720                                                                                     | 7.1                            |
| Iron                  | µg/l | 2/6                      | DWS          | 200  | SLEMS_SW02_200720                                                                                     | 200                            |
| Lead                  | μg/l | 2/6                      | EQS          | 1.3  | SLEMS_SW02_200720                                                                                     | 1.5                            |
| Manganese             | μg/l | 6/6                      | DWS          | 50   | SLEMS_SW01_200720<br>SLEMS_SW02_200720<br>SLEMS_SW03_200720<br>SLEMS_SW04_200720<br>SLEMS_SW06_200720 | 120<br>71<br>110<br>120<br>120 |

| Contaminant             | Unit | No. Samples<br>Exceeding | WQS Ex            | xceeded          | Sample                                                                                                | Concentration                |
|-------------------------|------|--------------------------|-------------------|------------------|-------------------------------------------------------------------------------------------------------|------------------------------|
| Nickle                  | μg/l | 1/6                      | EQS               | 8.6              | SLEMS_SW04_200720                                                                                     | 8.6                          |
| Zinc                    | μg/l | 6/6                      | EQS               | 7.9              | SLEMS_SW01_200720<br>SLEMS_SW02_200720<br>SLEMS_SW03_200720<br>SLEMS_SW04_200720<br>SLEMS_SW06_200720 | 12<br>13<br>17<br>15<br>13   |
| TPH                     | μg/l | 10/15                    | EQS<br>and<br>DWS | 50               | SLEMS_SW02_200720<br>SLEMS_SW03_200720<br>SLEMS_SW04_200720                                           | 7,000<br>180<br>420          |
| Fluoranthene            | μg/l | 12/15                    | EQS               | 0.0063           | SLEMS_SW01_200720<br>SLEMS_SW03_200720<br>SLEMS_SW04_200720<br>SLEMS_SW06_200720                      | 0.13<br>0.07<br>0.02<br>0.09 |
| Benzo(b)fluoranthene    | μg/l | 10/15                    | EQS<br>DWS        | 0.017<br>0.025   | SLEMS_SW01_200720<br>SLEMS_SW03_200720<br>SLEMS_SW06_200720                                           | 0.1<br>0.04<br>0.08          |
| Benzo(k)fluoranthene    | μg/l | 18/15                    | EQS<br>DWS        | 0.017<br>0.025   | SLEMS_SW01_200720<br>SLEMS_SW03_200720<br>SLEMS_SW06_200720                                           | 0.04<br>0.02<br>0.03         |
| Benzo(a)pyrene          | μg/l | 5/15                     | EQS<br>DWS        | 0.017            | SLEMS_SW01_200720<br>SLEMS_SW03_200720<br>SLEMS_SW06_200720                                           | 0.05<br>0.02<br>0.05         |
| Indeno(1,2,3-c,d)pyrene | µg/l | 3/15                     | DWS               | 0.025            | SLEMS_SW01_200720<br>SLEMS_SW06_200720                                                                | 0.05<br>0.04                 |
| Benzo(g,h,i)perylene    | μg/l | 6/15                     | EQS<br>DWS        | 0.00082<br>0.025 | SLEMS_SW01_200720<br>SLEMS_SW03_200720<br>SLEMS_SW06_200720                                           | 0.06<br>0.02<br>0.04         |

Concentrations of CoC measured above MDL for which no GAC was readily available are qualitatively assessed in Section 4.3.4. Discussion of the concentrations of CoC measured in leachate which are in excess of WQS is included in Section 4.3.5

# 4.3.5 Qualitative Risk Assessment for Substances in Leachate, Surface and Groundwater without WQS

As shown in Appendix E, F, and G for several contaminants including some metals (beryllium and magnesium) and inorganics (chloride, and sulphate) WQS are not readily available for comparison. The following compounds did not have readily available GAC and were recorded at concentrations in excess of their MDL:

calcium, magnesium, sodium, sulphate and chloride, these elements and compounds are present naturally in groundwater. Considering the site setting (close to saline coastal environment) these compounds are not considered to pose a significant risk to water resources.

Given a number of PAHs do not have readily available WQS, assessment of the risk to water resources will be made using PAHs in groundwater that have available WQS. This is considered to be sufficiently protective of water resources. Benzyl alcohol for which no GAC is available was measured in one surface water sample and will be considered in Section 4.3.6.

None of the contaminants without WQS are expected to pose a significant risk to Controlled Waters under a commercial redevelopment scenario and therefore further assessment of the contaminants in deep soils is not warranted.

#### 4.3.6 Discussion

#### PAH

Concentrations of PAH have been measured in excess of WQS in ten leachate, six groundwater, and five surface water samples. Of the measured concentrations of PAH in excess, they are considered to be marginally in excess of the WQS. Given this, and that PAH are generally of low mobility in the natural environment, the risk to water resources receptors from these contaminants is considered to be low even for PAH without WQS detected above MDL.

#### **Heavy Metals**

Of the heavy metals, arsenic, cadmium, copper, lead, mercury, molybdenum, and zinc were measured in excess of the WQS in leachate. Of these, only lead was measured in excess of the WQS in groundwater, and this was in a single location and only marginally above the WQS (1.4µg/l against a WQS of 1.3µg/l). As such the concentrations of heavy metals in leachate are not considered to pose a risk to controlled waters, further consideration of molybdenum is required.

Concentrations of boron, iron, and manganese have been measured in excess of WQS in groundwater. None of these concentrations were measured in excess of WQS when compared to soil leachate. As such, the source of elevated concentrations of heavy metals in the groundwater is unlikely to have been identified as part of these works, as such further consideration should be given as to the risk to water resources.

Concentrations of cadmium, chromium (VI), copper, iron, lead, manganese, nickel, and zinc were measured in excess of the WQS in surface water. Of these cadmium, chromium (VI), copper, nickel, and zinc were not measured above the EQS in groundwater at the site and therefore are the site is not considered a likely source for these metals in surface water.

Manganese was measured in groundwater sampled from nine wells at the site, boron from six wells, and lead and iron from one well apiece. Whilst it is noted that these elements are naturally occurring and may not result from the site further consideration should be given as to the risk to surface water.

#### Inorganic compounds

Concentrations of ammoniacal nitrogen were marginally in excess of the WQS in six of the eleven groundwater samples tested; concentrations were marginally below the WQS in leachate testing completed on fourteen samples. Whilst it is noted that ammoniacal nitrogen can be naturally occurring, the risk to water resources from concentrations of ammoniacal nitrogen measured in groundwater requires further consideration.

#### **Phenois**

Phenol was measured at concentrations an order of magnitude above the WQS in groundwater sampled from five of the eleven monitoring wells sampled. Phenol was not measured above the MDL in soil or leachate samples tested or in surface water. As such, the source of the phenol in the groundwater does not appear to be related to the soil sampled at the site. Given the location of the site in a heavily industrialised area, it is possible that the phenol concentrations measured in the groundwater are a result of contaminants migrating onto site from off-site sources or that there is an unidentified source of phenol on site. The risk to water resources from concentrations of phenol warrants further consideration.

#### 4.4 Ground Gas

The concentrations of ground gasses and flow rates observed in section 3.7 do not identify an unacceptable risk to human health or built receptors from the accumulation of ground gas. However, as the ground investigation was not designed with a particular redevelopment scenario in mind, the gas data monitoring was limited and may not be representative of the entire extent of the site under a particular redevelopment.

Given the proposed remedial strategy for the site (10035117-AUK-XX-XX-RP-ZZ-0181-MPA\_ROA and Strategy) comprising the excavation processing and replacement of a significant proportion of the made ground, further monitoring is recommended once this is complete based on the specific requirements of a particular redevelopment.

#### 4.5 Built Receptors

Certain forms of land contamination can pose a risk to subsurface structures and services, where these are in direct contact with soil and/or groundwater. Substances such as dissolved metals, sulphate, cations, phenols and hydrocarbons in high concentrations can adversely affect in-ground materials such as concrete, metal and plastics.

One potential built receptor is plastic water supply pipes, which can be affected by permeation of hydrocarbons and organic solvents into the pipe. The available chemical data for soil samples has been reviewed against the UK Water Industry Research (UKWIR) criteria to provide an indication of the potential acceptability of polyethylene (PE) pipes in brownfield land (Water UK, 2014), although an exact comparison is not possible due to differences in the determinand suites tested.

Concentrations of petroleum hydrocarbons, and SVOC measured in some soil samples are above the criteria for unprotected PE water pipes with between 8% (SVOC) and 5% (petroleum hydrocarbons) of soil samples in excess of UKWIR criteria. It is also noted the Made Ground at the site can be alkaline (up to a pH of 12.5). Therefore, additional testing should be carried along the route of any proposed new water supply pipe, or barrier pipe or similar could be used.

The potential for the ground conditions to generate an aggressive chemical environment for concrete (sulphate attack) is outside the scope of this report.

Potential pollutant linkage E (attack on subsurface structures) cannot be discounted at this stage and appropriate mitigation measures may be required, these will be dependent on the redevelopment scenario and may require further assessment to define.

# 5 Updated Conceptual Site Model

An updated CSM has been developed, using the findings of the above assessments, and is presented below as Figure 7. Pollutant linkages that have been shown to be inactive or not a significant risk have been removed.

Updated Conceptual Site Model - Commercial Industrial End Use **Potential Primary Sources** Potential Secondary Sources Potential Pathways Potential Receptors ON-SITE - CURRENT Metal Processing Area Vegetable Ingestion Future On-Site Resident Sources: Made Ground including slag deposits, Inhalation of Indoor Air railways, substation, gragage and workshop Soil Source Inhalation of Outdoor Air Metals (including heavy metals), PAHs, VOC, SVOC, cyanide, thiocyanate, sulphate, pH, Incidental Ingestion ammonia, PCBs, and asbestos. Potential source of ground gas Commercial Industrial Workers (Redevelopement) Incidental Dermal Contact Leaching ON-SITE - HISTORIC Inhalation of Dust Indoors As above **Neighbouring Residents** Inhalation of Dust Outdoors Sources: As above Inhalation of Indoor Air CoC: As above Inhalation of Outdoor Air On-Site Groundwater Source Incidental Ingestion OFF-SITE - CURRENT Incidental Dermal Contact SLEMS, Landfill, port facilities, Sources: Landfilled material, tanks, storage areas Off-Site Structures COCs: Metals (including heavy metals), PAHs, Migra cyanide, thiocyanate, sulphate, pH, ammonia, and asbestos. Potential source of ground gas Surface Waters (Cleveland and Lackenby Channel) OFF-SITE - HISTORIC SLEMS, Landfill, port facilities, Inhalation of Indoor Air hydrocarbon storage facilities Aguifers - Tidal Flat Deposits Sources: and Mercia Mudstone Inhalation of Outdoor Air SLEMS, Highfield Landfill, port facilities, tanks Off-Site Groundwater Incidental Ingestion

Incidental Dermal Contact

Sensitive Ecological Sites

Figure 7

Jpdated Conceptual Site Model - Commercial Industrial End Use

Key:

COCs:

Metals, asbestos, TPH, PAH, cyanides, thiocyanate, VOCs, SVOCs, chloride,

ammonia, sulphate, pH.
Potential source of ground gas.

Pollutant linkage not considered to present a significant level of risk

# 6 Conclusions

This report has used **DRAFT** information obtained from the recent ground investigation to assess the potential contamination risks to human health, Controlled Waters, ecological receptors and built property from contaminants in deep soils and groundwater. The assessment has been undertaken based on a future generic commercial end use which is considered to be sufficiently conservative to also cover industrial end uses. Based upon this assessment of data, the CSM has been updated to identify the pollutant linkages considered to be potentially complete – dependent on the final development design (previous page).

Heavy metals have been recorded in soil and dissolved in soil leachate samples across the site. These are likely associated with the slag within the Made Ground. The probable source is historical placement of material from the steelmaking process.

## 6.1 Human Health Risk

Potential risks to human health via intake of a range of contaminants from deep soils (Made Ground including slag materials) and groundwater were assessed using Generic Assessment Criteria (GAC). None of the contaminants for which GAC are available exceeded the criteria and therefore no unacceptable risks have been identified from contact with or ingestion of soils on the site based on the current dataset. Soil pH was noted to be basic / alkaline, groundwater pH was noted to be neutral to slightly alkaline / basic. Contaminants without GACs have been qualitatively reviewed and no potentially significant risks have been identified based on the current dataset.

# 6.2 Controlled Waters

Several exceedances of Water Quality Standards (WQS) were recorded in soil leachate samples from Made Ground and groundwater samples from the Mercia Mudstone Formation and Tidal Flat Deposits. Some, but not all, dissolved contaminants in groundwater are consistent with soil leachate analysis results indicating that some leaching is occurring into shallow groundwater from the slag deposits. For some contaminants such as phenol, and manganese, concentrations were significantly lower in leachate than in groundwater indicating either that the source of these contaminants has not yet been identified or that they represent a residual source that has previously leached from soils.

Whilst concentrations of CoC have been measured in excess of Drinking Water Standards (DWS) in groundwater samples collected from the site, taking the wider environmental setting into account including the brackish nature of the identified water within both the Mercia Mudstone and Tidal Flat Deposits and proximity to the estuary and coast, the resource value of the aquifer is likely to be low.

Based on the groundwater elevation data for the Made Ground data the groundwater flow is expected to have a northerly component towards the River Tees and potentially the Lackenby Channel. Based on the current data set groundwater flow could not be confirmed for either the Tidal Flat Deposits or the Mercia Mudstone.

Given that concentrations of certain contaminants have been measured above the WQS including heavy metals, ammoniacal nitrogen, PAH and phenol, that groundwater flow is potentially towards the River tees and potentially also the Lackenby Channel, and that some of these contaminants have been measured in surface water, further assessment of the risk to surface water is warranted. However, it is noted that surface water quality has not been noted to deteriorate as it passes the southern section of the site.

## 6.3 Recommendations

- 1. Additional groundwater and surface water monitoring should be conducted to create a broader temporal data set for the site, and further refine the interaction between these controlled waters.
- 2. Depending on the redevelopment scenario further ground investigation including ground gas monitoring of shallow soils may need to be carried out prior to redevelopment to quantify the ground gas risk on the site in the context of the proposed layout and design.
- 3. If new foundations penetrating the Glacial Till are proposed, a foundation works risk assessment should be carried out to enable appropriate mitigation measures to be designed that will prevent

Metals Processing Area Deep Soils and Controlled Waters; Former Steelworks, Redcar. Environmental Site Assessment

- contaminant migration *via* a preferential pathway down into the underlying Mercia Mudstone Formation aquifer.
- 4. Appropriate UXO mitigation measures should be implemented during any excavation / piling works at the site where a UXO encounter is possible in order to reduce the risk to as low as reasonable possible (ALARP).

Metals Processing Area Deep Soils and Controlled Waters; Former Steelworks, Redcar. Environmental Site Assessment

# **APPENDIX A**

# **Figures**



# Legend

Site Boundary



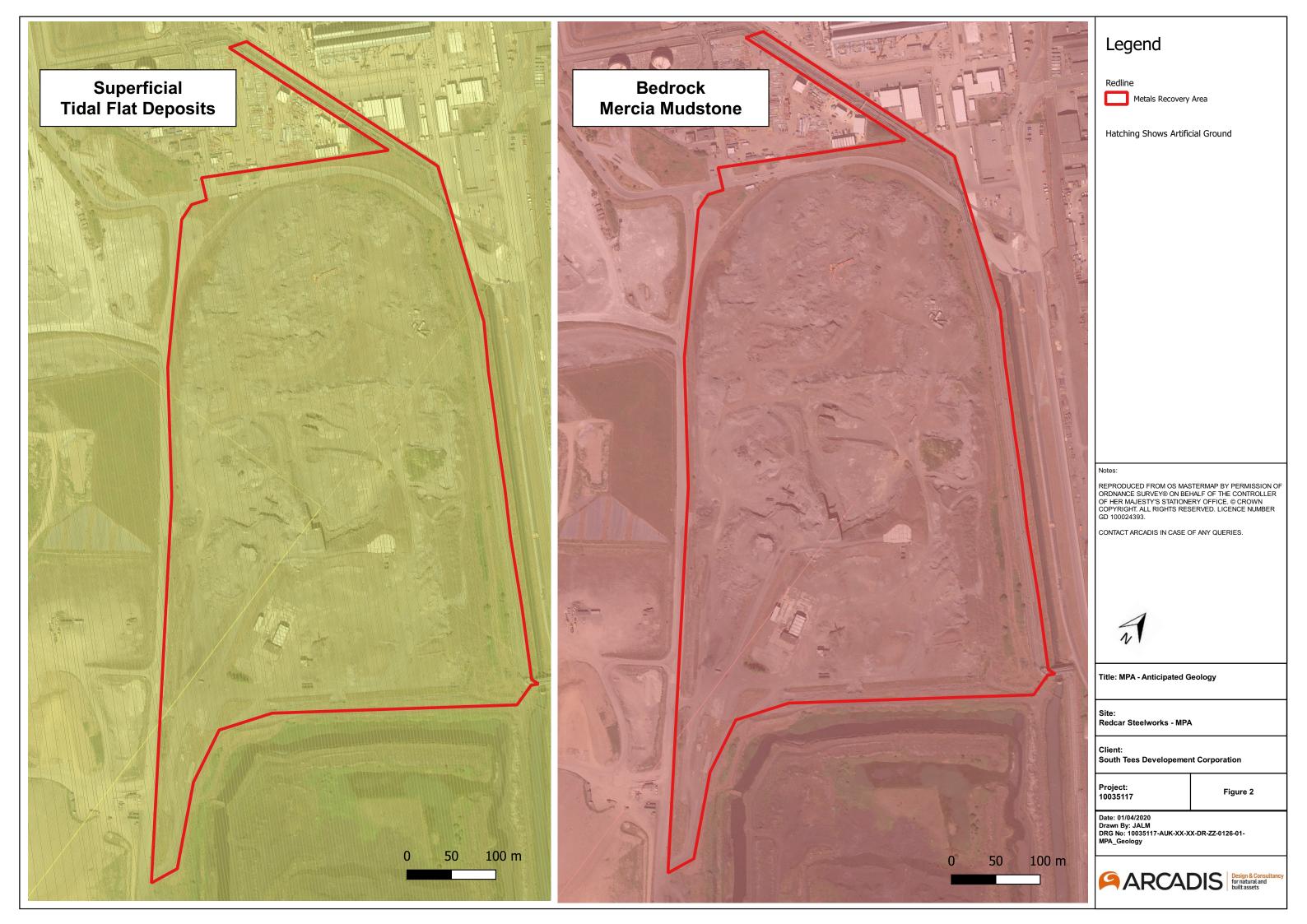
Metals Processing Area

REPRODUCED FROM OS MASTERMAP BY PERMISSION OF ORDNANCE SURVEY® ON BEHALF OF THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE. © CROWN COPYRIGHT. ALL RIGHTS RESERVED. LICENCE NUMBER GD 100024393.

CONTACT ARCADIS IN CASE OF ANY QUERIES.



Title: MPA - Site Location Plan


Site: Redcar Steelworks - MPA

Client: South Tees Developement Corporation

Figure 1

Date: 07/08/2020 Drawn By: JALM DRG No: 10035117-AUK-XX-XX-DR-ZZ-0127-01-MPA\_SLP











# Legend

GI data files Visual Observation

Monitoring Well

Plans Redline

Metals Recovery Area

Maps Google Sat



REPRODUCED FROM OS MASTERMAP BY PERMISSION OF ORDNANCE SURVEY® ON BEHALF OF THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE. © CROWN COPYRIGHT. ALL RIGHTS RESERVED. LICENCE NUMBER GD 100024393.

CONTACT ARCADIS IN CASE OF ANY QUERIES.

Elevation data not available for MPA\_AUK\_BH104 / MPA\_AUK\_BH106 / MPA\_AUK\_BH107 as time of issue.

Title: MPA - Hydrogeology

Redcar Steelworks - MPA

South Tees Developement Corporation

Project: 10035117

Figure 3

Date: 07/12/2020 Drawn By: JALM DRG No: 10035117-AUK-XX-XX-DR-ZZ-0249-01-MPA\_Hydro









# STDC Shapefile Data

Rail Track

Tanks

Redline

Metals Recovery Area

REPRODUCED FROM OS MASTERMAP BY PERMISSION OF REPRODUCED FROM OS MAS IERMAP BY PERMISSION OF ORDNANCE SURVEY® ON BEHALF OF THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE. © CROWN COPYRIGHT. ALL RIGHTS RESERVED. LICENCE NUMBER GD 100024393.

CONTACT ARCADIS IN CASE OF ANY QUERIES.

Not shown PAOC - Made Ground

Title: MPA - Potential Areas of Concern (PAOC)

Redcar Steelworks - MPA

South Tees Developement Corporation

Project: 37774100

Figure 4

Date: 3/08/2020

Drawn By: JALM DRG No: 10035117-AUK-XX-XX-DR-ZZ-0125-01-MPA\_PAOC







Legend

GI data files Plans

Redline

Maps Google Sat

Sample Location Surface Water Metals Recovery Area

REPRODUCED FROM OS MASTERMAP BY PERMISSION OF ORDNANCE SURVEY® ON BEHALF OF THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE. © CROWN COPYRIGHT. ALL RIGHTS RESERVED. LICENCE NUMBER GD 100024393.

CONTACT ARCADIS IN CASE OF ANY QUERIES.

Title: MPA - Surface Water Sampling Locations

Site: Redcar Steelworks - MPA

South Tees Developement Corporation

Project: 37774100

Figure 5

Date: 3/08/2020 Drawn By: JALM DRG No: 10035117-AUK-XX-XX-DR-ZZ-0247-01-MPA\_SW\_Loc





Figure 6
Outline Conceptual Site Model - Commercial Industrial End Use

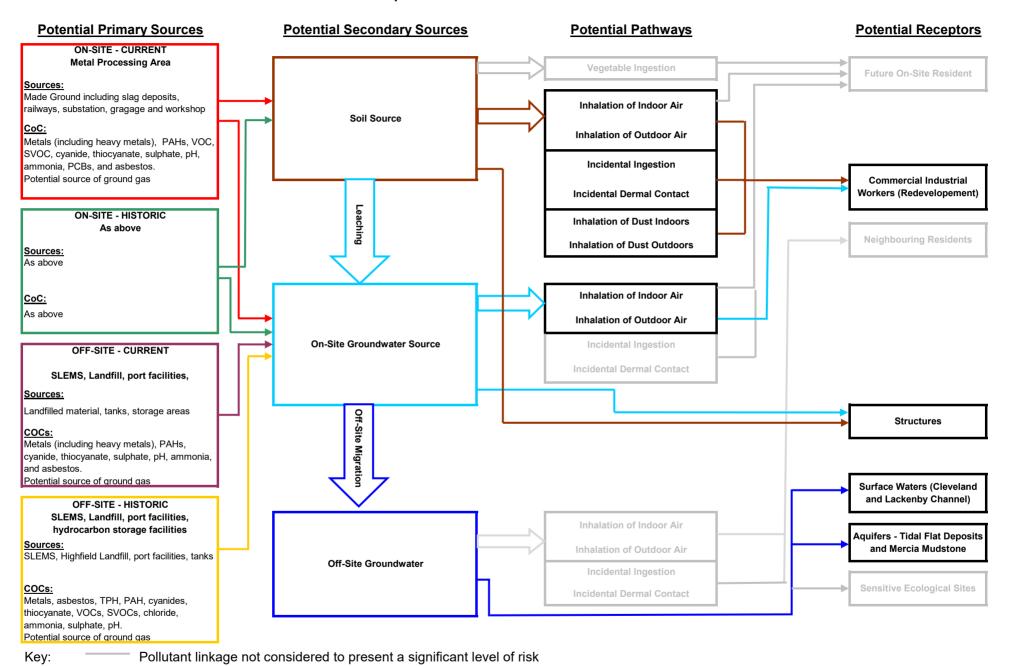
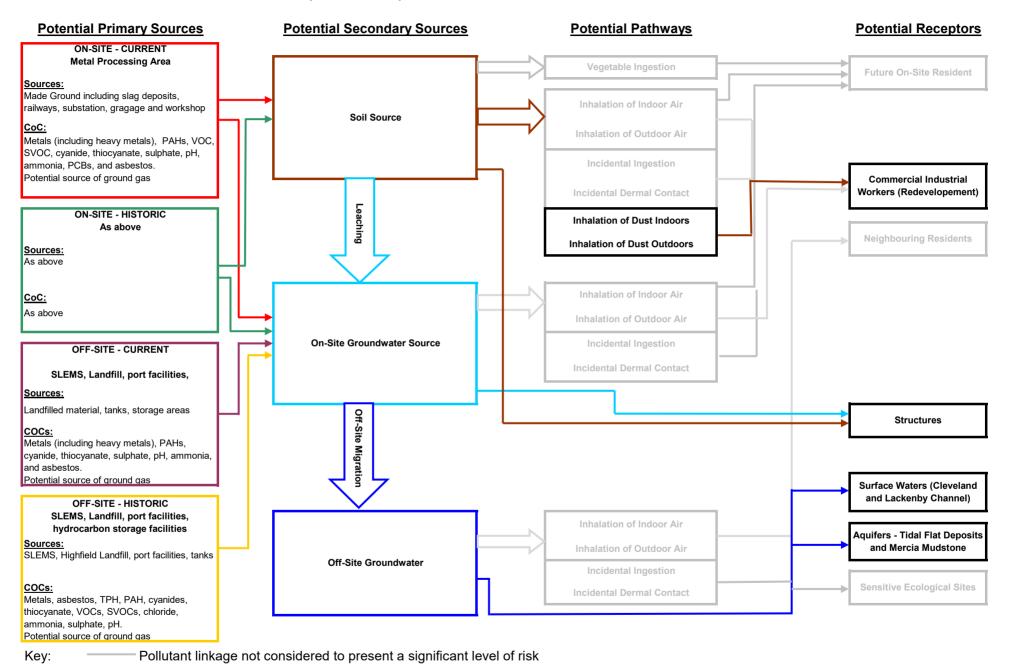






Figure 7
Updated Conceptual Site Model - Commercial Industrial End Use

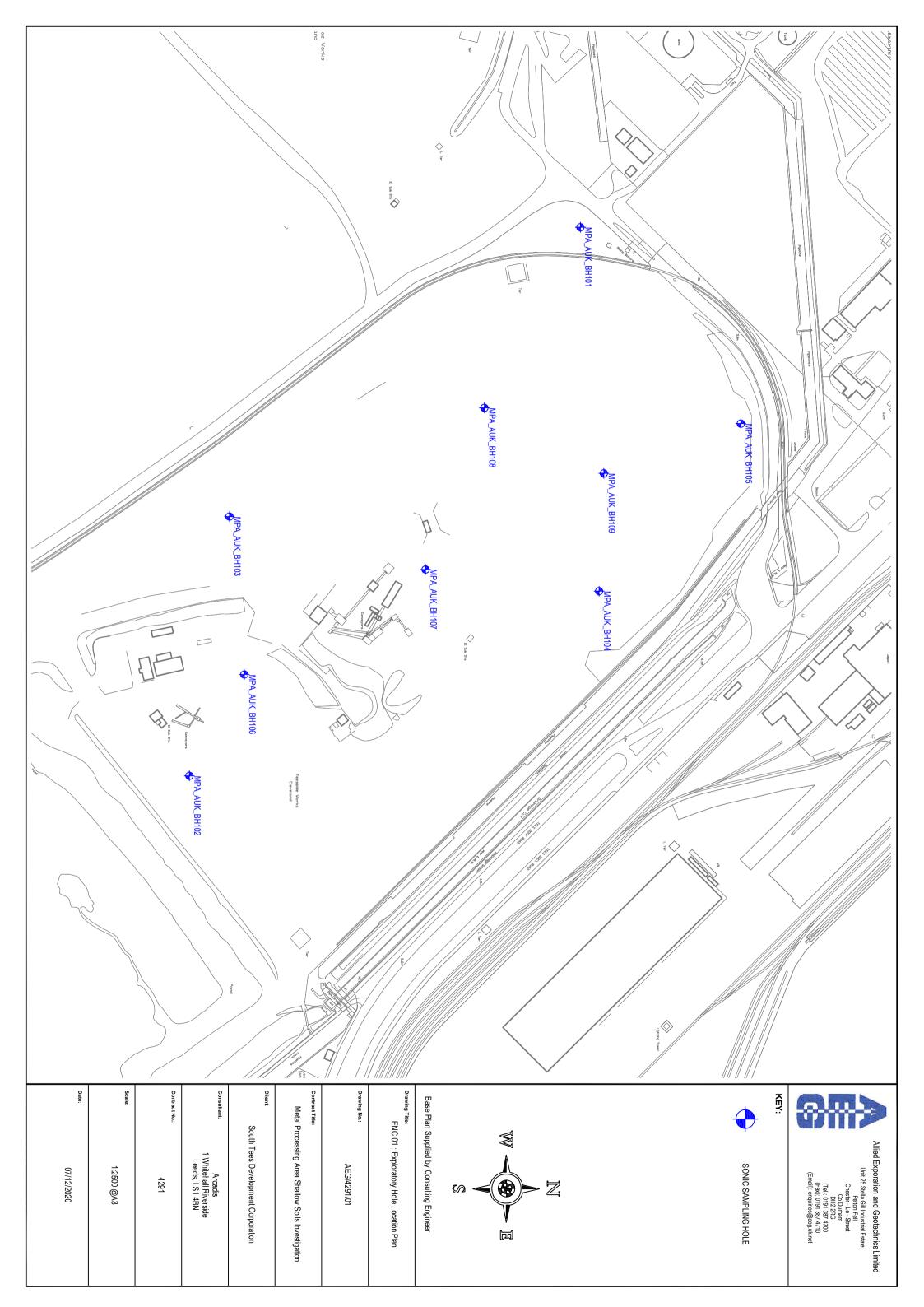




# **APPENDIX B**

# **Study Limitations**

**IMPORTANT**: This section should be read before reliance is placed on any of the information, opinions, advice, recommendations or conclusions contained in this report.


- This report has been prepared by Arcadis UK Ltd (Arcadis), with all reasonable skill, care and diligence within the terms of the Appointment and with the resources and manpower agreed with STDC (the 'Client'). Arcadis does not accept responsibility for any matters outside the agreed scope.
- 2. This report has been prepared for the sole benefit of the Client unless agreed otherwise in writing.
- 3. Unless stated otherwise, no consultations with authorities or funders or other interested third parties have been carried out. Arcadis are unable to give categorical assurance that the findings will be accepted by these third parties as such bodies may have unpublished, more stringent objectives. Further work may be required by these parties.
- 4. All work carried out in preparing this report has used, and is based on, Arcadis' professional knowledge and understanding of current relevant legislation. Changes in legislation or regulatory guidance may cause the opinion or advice contained in this report to become inappropriate or incorrect. In giving opinions and advice, pending changes in legislation, of which Arcadis is aware, have been considered. Following delivery of the report, Arcadis have no obligation to advise the Client or any other party of such changes or their repercussions.
- This report is only valid when used in its entirety.
   Any information or advice included in the report should not be relied upon until considered in the context of the whole report.
- Whilst this report and the opinions made are correct to the best of Arcadis' belief, Arcadis cannot guarantee the accuracy or completeness of any information provided by third parties.
- This report has been prepared based on the information reasonably available during the project programme. All information relevant to the scope may not have been received.
- 8. This report refers, within the limitations stated, to the condition of the Site at the time of the inspections.

- No warranty is given as to the possibility of changes in the condition of the Site since the time of the investigation.
- The content of this report represents the professional opinion of experienced environmental consultants. Arcadis does not provide specialist legal or other professional advice. The advice of other professionals may be required.
- 10. Where intrusive investigation techniques have been employed they have been designed to provide a reasonable level of assurance on the conditions. Given the discrete nature of sampling, no investigation technique is capable of identifying all conditions present in all areas. In some cases the investigation is further limited by site operations, underground obstructions and above ground structures. Unless otherwise stated, areas beyond the boundary of the site have not been investigated.
- 11. If below ground intrusive investigations have been conducted as part of the scope, service tracing for safe location of exploratory holes has been carried out. The location of underground services shown on any drawing in this report has been determined by visual observations and electromagnetic techniques. No guarantee can be given that all services have been identified. Additional services, structures or other below ground obstructions, not indicated on the drawing, may be present on Site.
- Unless otherwise stated the report provides no comment on the nature of building materials, operational integrity of the facility or on any regulatory compliance issue

Metals Processing Area Deep Soils and Controlled Waters; Former Steelworks, Redcar. Environmental Site Assessment

# **APPENDIX C**

**DRAFT AEG Data** 



# ALLIED EXPLORATION & GEOTECHNICS LIMITED Head Office: Regional Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 300 Fax: 01772 735 999

# SONIC SAMPLE HOLE RECORD

| Project: | Metal Processing Area Deep Soil an              | Explora                                          | tory Hole No.              |                           |           |         |
|----------|-------------------------------------------------|--------------------------------------------------|----------------------------|---------------------------|-----------|---------|
| Client:  | South Tees Development Corporation              | ner Redcar Steelworks,<br>::454302.810 N:522861. |                            | MPA_/                     | AUK_BH101 |         |
| Method ( | Equipment): Sonic Coring (Boart Longyear LS250) |                                                  | Ground Level (m):<br>8.941 | Start Date:<br>16/10/2020 | Sheet:    | 1 of 10 |

| SAMPLES & TESTS                           |                                                                            |                     |       |                  |                                              |                                                | STRATA                                                                                                                                                                                                                                                      | = urt/ |             |
|-------------------------------------------|----------------------------------------------------------------------------|---------------------|-------|------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|
| Depth                                     | Type<br>No                                                                 | Test<br>Result      | Water | Reduced<br>Level | Reduced Legend Depth (Thickness) Description |                                                | Instrument/<br>Backfill                                                                                                                                                                                                                                     |        |             |
| 0.00-1.20<br>0.60<br>0.80                 | J1 <sub>(U1)</sub> B2 <sub>(U1)</sub>                                      |                     |       |                  |                                              |                                                | MADE GROUND (Brown green and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and includes slag. Slag content is 75-100%. Slag is vesicular). | A   A  | ₩ ¼ ₩ ₩ ₩ ₩ |
| 1.00<br>1.20-2.70<br>1.20                 | PID<br>U2<br>S                                                             | <0.1ppm<br>50/150mm |       |                  |                                              |                                                | at c.1.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                               |        |             |
| 2.00                                      | PID                                                                        | <0.1ppm             |       |                  |                                              | <del>-</del><br><br><br><br><br><br><br><br>   |                                                                                                                                                                                                                                                             |        |             |
| 2.70-4.20<br>2.70<br>3.00                 | U3 <sub>(SS)</sub><br>S<br>PID                                             | 50/90mm<br><0.1ppm  |       |                  |                                              |                                                | at c.2.70m BGL very dense/cobble obstruction.                                                                                                                                                                                                               |        |             |
| 3.60<br>3.80<br>4.00<br>4.20-5.70<br>4.20 | J3 <sub>(U3)</sub><br>B4 <sub>(U3)</sub><br>PID<br>U4 <sub>(SS)</sub><br>S | 0.6ppm<br>50/120mm  |       |                  |                                              |                                                |                                                                                                                                                                                                                                                             |        |             |
| 4.70<br>5.00                              | ES5 <sub>(U4)</sub>                                                        | 0.5ppm              |       |                  |                                              | (9.30)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                                             |        |             |
| 5.70-7.20<br>5.70<br>6.00                 | U5 <sub>(SS)</sub><br>S<br>PID                                             | N47<br><0.1ppm      |       |                  |                                              |                                                | at c.5.70m BGL dense.                                                                                                                                                                                                                                       |        |             |
| 6.60<br>6.80<br>7.00<br>7.20-8.70<br>7.20 | J6 <sub>(U5)</sub><br>B7 <sub>(U5)</sub><br>PID<br>U6<br>S                 | <0.1ppm<br>50/185mm |       |                  |                                              |                                                | at c.7.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                               |        |             |

| Borin      | g Progres | s and Wat | er Observa         | itions            | Liner Sample Information                                                               |                                        |                                        |                                      | General                                                                                                                                                                                                                                                                                                                                               |  |  |
|------------|-----------|-----------|--------------------|-------------------|----------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Date       | Depth     | Casing    | Casing Dia<br>(mm) | Water<br>Standing | From - To                                                                              | Internal Dia<br>(mm)                   | Recovery<br>(%)                        | Subsampled                           | Remarks                                                                                                                                                                                                                                                                                                                                               |  |  |
| 16/10/2020 | 0.00      | 0.00      | 178                |                   | 0.00 - 1.20<br>1.20 - 2.70<br>2.70 - 4.20<br>4.20 - 5.70<br>5.70 - 7.20<br>7.20 - 8.70 | 150<br>150<br>150<br>150<br>150<br>150 | 100<br>100<br>100<br>100<br>100<br>100 | Yes<br>No<br>Yes<br>Yes<br>Yes<br>No | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-9.00m and 1 No. 50mm diameter slotted standpipe installed between 12.00-15.00m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush. |  |  |

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

|   | Δ |
|---|---|
|   | ~ |
|   |   |
|   |   |
|   |   |
|   | _ |
|   | _ |
| Ŀ | 3 |

# SONIC SAMPLE HOLE RECORD

| Project: | Metal Processing Area Deep Soil an                  | Exploratory Hole No.                                  |                           |                   |
|----------|-----------------------------------------------------|-------------------------------------------------------|---------------------------|-------------------|
| Client:  | South Tees Development Corporation                  | ner Redcar Steelworks, Re<br>::454302.810 N:522861.77 |                           | MPA_AUK_BH101     |
| Method   | (Equipment):<br>Sonic Coring (Boart Longyear LS250) | Ground Level (m):<br>8.941                            | Start Date:<br>16/10/2020 | Sheet:<br>2 of 10 |

| SAME                          | PLES & T                                         | ESTS                      |       |                  | ı                                       |                                 | STRATA                                                                                                                                                                                                                                                                                               | nent/                   |
|-------------------------------|--------------------------------------------------|---------------------------|-------|------------------|-----------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Depth                         | Type<br>No                                       | Test<br>Result            | Water | Reduced<br>Level | Legend                                  | Depth<br>(Thickness)            | Description                                                                                                                                                                                                                                                                                          | Instrument/<br>Backfill |
| 8.70-10.20<br>8.70<br>9.00    | PID  U7 <sub>(SS)</sub> S PID                    | <0.1ppm<br>N14<br><0.1ppm |       | -0.36            |                                         | 9.30                            | MADE GROUND (Brown green and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and includes slag. Slag content is 75-100%. Slag is vesicular). (continued) at c.8.70m BGL medium dense. |                         |
| 9.60<br>9.80<br>10.00         | J8 <sub>(U7)</sub><br>B9 <sub>(U7)</sub><br>PID  | <0.1ppm                   |       |                  | ×                                       | -<br>-<br>-<br>-<br>-<br>-<br>- | Medium dense grey brown silty SAND with silt lenses and some fragments of shell. Sand is fine to coarse.                                                                                                                                                                                             |                         |
| 10.20-11.70<br>10.20<br>10.60 | U8 <sub>(SS)</sub> S                             | N25                       |       |                  | × · · · · · · · · · · · · · · · · · · · |                                 |                                                                                                                                                                                                                                                                                                      |                         |
| 11.70-13.20<br>11.70          | U9 <sub>(SS)</sub><br>S                          | 50/280mm                  |       |                  |                                         |                                 | at c.11.70m BGL very dense.                                                                                                                                                                                                                                                                          |                         |
| 12.60<br>12.80                | J11 <sub>(U9)</sub><br>B12 <sub>(U9)</sub>       |                           |       |                  | × · · · · · · · · · · · · · · · · · · · | ;<br>;<br>;<br>;                |                                                                                                                                                                                                                                                                                                      | 000                     |
| 13.20-14.70<br>13.20          | U10<br>S                                         | N36                       |       | -5.76            |                                         |                                 | at c.13.20m BGL dense.                                                                                                                                                                                                                                                                               |                         |
| 14.70-16.20<br>14.70<br>15.00 | U11 <sub>(SS)</sub><br>S<br>J13 <sub>(U11)</sub> | N18                       |       | -5./0            |                                         | 14.70                           | Firm to stiff brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone.                                                                                                                                   | 000                     |
| 15.50                         | B14 <sub>(U11)</sub>                             |                           |       |                  | °                                       | -<br> -<br> -<br> -<br> -       |                                                                                                                                                                                                                                                                                                      |                         |

| Borin                    | g Progres      | s and Wat      | er Observa         | tions             | Liner Sample Information                                                         |                                        |                                |                                | General                                                                                                                                                                                                                                                                                                                                               |  |
|--------------------------|----------------|----------------|--------------------|-------------------|----------------------------------------------------------------------------------|----------------------------------------|--------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date                     | Depth          | Casing         | Casing Dia<br>(mm) | Water<br>Standing | From - To                                                                        | Internal Dia<br>(mm)                   | Recovery<br>(%)                | Subsampled                     | Remarks                                                                                                                                                                                                                                                                                                                                               |  |
| 16/10/2020<br>19/10/2020 | 11.70<br>11.70 | 11.70<br>11.70 | 178<br>178         | 6.20<br>7.59      | 8.70 - 10.20<br>10.20 - 11.70<br>11.70 - 13.20<br>13.20 - 14.70<br>14.70 - 16.20 | 150<br>150<br>150<br>150<br>150<br>150 | 73<br>100<br>100<br>100<br>100 | Yes<br>Yes<br>Yes<br>No<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-9.00m and 1 No. 50mm diameter slotted standpipe installed between 12.00-15.00m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush. |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br>4291 |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|----------------------|
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|----------------------|

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

|   | Δ |
|---|---|
|   | ~ |
|   |   |
|   |   |
|   |   |
|   | _ |
|   | _ |
| Ŀ | 3 |

# SONIC SAMPLE HOLE RECORD

| Project:   | Project:  Metal Processing Area Deep Soil and Groundwater Investigation |  |                                                       |                           |                   |  |  |  |  |  |
|------------|-------------------------------------------------------------------------|--|-------------------------------------------------------|---------------------------|-------------------|--|--|--|--|--|
| Client:    | South Tees Development Corporation                                      |  | mer Redcar Steelworks, Re<br>E:454302.810 N:522861.77 |                           | MPA_AUK_BH101     |  |  |  |  |  |
| Method (Eq | quipment):<br>Sonic Coring (Boart Longyear LS250)                       |  | Ground Level (m):<br>8.941                            | Start Date:<br>16/10/2020 | Sheet:<br>3 of 10 |  |  |  |  |  |

| SAMPLES & TESTS      |                                              |                |       |                  |        |                                                                                                      | STRATA                                                                                                                                                                                | nt/                     |
|----------------------|----------------------------------------------|----------------|-------|------------------|--------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Depth                | Type<br>No                                   | Test<br>Result | Water | Reduced<br>Level | Legend | Depth<br>(Thickness)                                                                                 | Description                                                                                                                                                                           | Instrument/<br>Backfill |
| 16.20-17.70<br>16.20 | U12<br>S                                     | N28            |       |                  | 0      | (2.90)                                                                                               | Firm to stiff brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone. (continued)        |                         |
| 17.70-19.20<br>17.70 | U13 <sub>(SS)</sub>                          | 50/261mm       |       | -8.66            | 0-0-0  | 17.60<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Red brown very clayey GRAVEL/very gravelly CLAY. Gravel is fine to medium angular and includes mudstone weathered. (Engineer notes weathering profile of an extremely weak mudstone). |                         |
| 18.50<br>18.70       | J15 <sub>(U13)</sub><br>B16 <sub>(U13)</sub> |                |       | -10.26           |        | -<br>-<br>-<br>-<br>-<br>-<br>19.20                                                                  |                                                                                                                                                                                       |                         |
| 19.20                | S                                            | 50/90mm        |       |                  |        |                                                                                                      | Complete at 19.20m BGL.                                                                                                                                                               |                         |

| Borin      | Boring Progress and Water Observations Liner Sample Information |        |                    |                   |                                |                      | General         |            |                                                                                                                                                                                                                                                                                                                                                       |  |
|------------|-----------------------------------------------------------------|--------|--------------------|-------------------|--------------------------------|----------------------|-----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date       | Depth                                                           | Casing | Casing Dia<br>(mm) | Water<br>Standing | From - To                      | Internal Dia<br>(mm) | Recovery<br>(%) | Subsampled | Remarks                                                                                                                                                                                                                                                                                                                                               |  |
| 19/10/2020 | 19.20                                                           | 19.20  | 178                |                   | 16.20 - 17.70<br>17.70 - 19.20 | 150<br>150           | 100<br>100      | No<br>Yes  | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-9.00m and 1 No. 50mm diameter slotted standpipe installed between 12.00-15.00m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush. |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

# SONIC SAMPLE HOLE RECORD

PRELIM2

| Proje | Metal Processing Area Deep Soil an                   |                                                       | Exploratory Hole No.      |                   |
|-------|------------------------------------------------------|-------------------------------------------------------|---------------------------|-------------------|
| Clier | nt: South Tees Development Corporation               | ner Redcar Steelworks, Re<br>::454302.810 N:522861.77 |                           | MPA_AUK_BH101     |
| Meth  | nod (Equipment): Sonic Coring (Boart Longyear LS250) | Ground Level (m):<br>8.941                            | Start Date:<br>16/10/2020 | Sheet:<br>4 of 10 |



# Figure MPA\_AUK\_BH101.2 MPA\_AUK\_BH101 1.20-2.70m BGL Affect Exploration & Co. METALS PROCESSING AREA 10 4291 MPA\_AUK\_BHIDI 1.20

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



## SONIC SAMPLE HOLE RECORD

PRELIM2

| Project:   | Metal Processing Area Deep Soil and Groundwater Investigation |  |                                                      |                           |                |  |  |  |
|------------|---------------------------------------------------------------|--|------------------------------------------------------|---------------------------|----------------|--|--|--|
| Client:    | South Tees Development Corporation                            |  | ner Redcar Steelworks, Re<br>:454302.810 N:522861.77 | MPA_AUK_BH101             |                |  |  |  |
| Method (Eq | quipment): Sonic Coring (Boart Longyear LS250)                |  | Ground Level (m):<br>8.941                           | Start Date:<br>16/10/2020 | Sheet: 5 of 10 |  |  |  |

# Figure MPA\_AUK\_BH101.3 MPA\_AUK\_BH101 2.70-4.20m BGL Exploration & PHOTOGRAPHIC BOARD METALS PROCESSING AREA -4291 MPA\_AUK\_BHIDI

# Figure MPA\_AUK\_BH101.4 MPA\_AUK\_BH101 4.20-5.70m BGL Allied Espleration & TV Controlled and PHOTOGRAPHIC BOARD METALS PROCESSING AREA MPA\_AUK\_BHIOI

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



# **SONIC SAMPLE HOLE RECORD**

PRELIM2

| Project:   | Project:  Metal Processing Area Deep Soil and Groundwater Investigation |                                                                                                 |                         |                           |                   |  |  |  |
|------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|---------------------------|-------------------|--|--|--|
| Client:    | South Tees Development Corporation                                      | s Development Corporation  Location: Former Redcar Steelworks, Redcar E:454302.810 N:522861.775 |                         |                           |                   |  |  |  |
| Method (Eq | pulpment): Sonic Coring (Boart Longyear LS250)                          |                                                                                                 | Ground Level (m): 8.941 | Start Date:<br>16/10/2020 | Sheet:<br>6 of 10 |  |  |  |

# Figure MPA\_AUK\_BH101.5 MPA\_AUK\_BH101 5.70-7.20m BGL



# Figure MPA\_AUK\_BH101.6 MPA\_AUK\_BH101 7.20-8.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



# SONIC SAMPLE HOLE RECORD

PRELIM2

| Project:   | Project:  Metal Processing Area Deep Soil and Groundwater Investigation |                                |                            |                           |                |  |  |  |
|------------|-------------------------------------------------------------------------|--------------------------------|----------------------------|---------------------------|----------------|--|--|--|
| Client:    | South Tees Development Corporation                                      | pment Corporation    Cocation: |                            |                           |                |  |  |  |
| Method (Eq | uipment):<br>Sonic Coring (Boart Longyear LS250)                        |                                | Ground Level (m):<br>8.941 | Start Date:<br>16/10/2020 | Sheet: 7 of 10 |  |  |  |

# Figure MPA\_AUK\_BH101.7 MPA\_AUK\_BH101 8.70-10.20m BGL METALS PROCESSING AREA CONTRACT NO. 4291 HOLE ID: MPA\_AUK\_BHID! DEPTH FROM 8.70 10.20



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



## **SONIC SAMPLE HOLE RECORD**

PRELIM2

| Project:   | Project:  Metal Processing Area Deep Soil and Groundwater Investigation |   |                                                       |                           |                   |  |  |  |
|------------|-------------------------------------------------------------------------|---|-------------------------------------------------------|---------------------------|-------------------|--|--|--|
| Client:    | South Tees Development Corporation                                      |   | ner Redcar Steelworks, Re<br>::454302.810 N:522861.77 |                           | MPA_AUK_BH101     |  |  |  |
| Method (Ed | quipment): Sonic Coring (Boart Longyear LS250)                          | • | Ground Level (m):<br>8.941                            | Start Date:<br>16/10/2020 | Sheet:<br>8 of 10 |  |  |  |

Figure MPA\_AUK\_BH101.9 MPA\_AUK\_BH101 11.70-13.20m BGL



Figure MPA\_AUK\_BH101.10 MPA\_AUK\_BH101 13.20-14.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



# SONIC SAMPLE HOLE RECORD

| Project | t:<br>Metal Processing Area Deep Soil an              |                                                      | Exploratory Hole No.      |                |
|---------|-------------------------------------------------------|------------------------------------------------------|---------------------------|----------------|
| Client: | South Tees Development Corporation                    | ner Redcar Steelworks, Ro<br>::454302.810 N:522861.7 |                           | MPA_AUK_BH101  |
| Method  | d (Equipment):<br>Sonic Coring (Boart Longyear LS250) | Ground Level (m):<br>8.941                           | Start Date:<br>16/10/2020 | Sheet: 9 of 10 |





Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



## SONIC SAMPLE HOLE RECORD

PRELIM2

| Project:  | Metal Processing Area Deep Soil an                 |               | Exploratory Hole No.     |                           |                 |
|-----------|----------------------------------------------------|---------------|--------------------------|---------------------------|-----------------|
| Client:   | South Tees Development Corporation                 | MPA_AUK_BH101 |                          |                           |                 |
| Method (E | equipment):<br>Sonic Coring (Boart Longyear LS250) | Gro           | ound Level (m):<br>8.941 | Start Date:<br>16/10/2020 | Sheet: 10 of 10 |

Figure MPA\_AUK\_BH101.13 MPA\_AUK\_BH101 17.70-19.20m BGL September 1 PHOTOGRAPHIC BOARD METALS PROCESSING AREA 4291 MPA\_AUK\_BHID1

# ALLIED EXPLORATION & GEOTECHNICS LIMITED Head Office: Regional Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 300 Fax: 01772 735 999

# **SONIC SAMPLE HOLE RECORD**

| Project:    | Metal Processing Area Deep Soil ar               | nd Groundwat | er Investigation                                      |                           | Exploratory Hole No. |
|-------------|--------------------------------------------------|--------------|-------------------------------------------------------|---------------------------|----------------------|
| Client:     | South Tees Development Corporation               |              | mer Redcar Steelworks, Re<br>E:454743.455 N:522547.48 |                           | MPA_AUK_BH102        |
| Method (Equ | uipment):<br>Sonic Coring (Boart Longyear LS250) |              | Ground Level (m):<br>7.367                            | Start Date:<br>15/10/2020 | Sheet:<br>1 of 7     |

| SAMPLES & TESTS STRATA                    |                                                                            |                |       |                  | ent/   | _                          |                                                                                                                                                                                                                                                             |              |       |
|-------------------------------------------|----------------------------------------------------------------------------|----------------|-------|------------------|--------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| Depth                                     | Type<br>No                                                                 | Test<br>Result | Water | Reduced<br>Level | Legend | Depth<br>(Thickness)       | Description                                                                                                                                                                                                                                                 | Instrument/  | 1     |
| 0.00-1.20                                 | U1 <sub>(SS)</sub>                                                         |                |       | 7.17             |        | 0.20                       | MADE GROUND (Grey concrete).                                                                                                                                                                                                                                | <b>XX</b> XX | Ę     |
| 1.00                                      | 11                                                                         |                |       |                  |        |                            | MADE GROUND (Brown green and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and includes slag. Slag content is 75-100%. Slag is vesicular). |              |       |
| 1.00<br>1.20<br>1.20-2.70                 | J1 <sub>(U1)</sub><br>PID<br>B2 <sub>(U2)</sub>                            | <0.1ppm        |       |                  |        |                            | at c.1.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                               |              |       |
| 1.20                                      | U2 <sub>(SS)</sub>                                                         | 50/110mm       |       |                  |        |                            |                                                                                                                                                                                                                                                             |              |       |
| 2.00                                      | PID                                                                        | <0.1ppm        |       |                  |        | -<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                                             |              |       |
| 2.70-4.20<br>2.70                         | U3 <sub>(SS)</sub>                                                         | 50/185mm       |       |                  |        |                            | at c.2.70m BGL very dense/cobble obstruction.                                                                                                                                                                                                               |              |       |
| 3.00                                      | PID                                                                        | <0.1ppm        |       |                  |        | (6.30)                     |                                                                                                                                                                                                                                                             |              |       |
| 4.00<br>4.00<br>4.20<br>4.20-5.70<br>4.20 | J3 <sub>(U3)</sub><br>PID<br>B4 <sub>(U4)</sub><br>U4 <sub>(SS)</sub><br>S | <0.1ppm<br>N28 |       |                  |        |                            | at c.4.20m BGL medium dense.                                                                                                                                                                                                                                |              |       |
| 5.00                                      | PID                                                                        | <0.1ppm        |       |                  |        |                            |                                                                                                                                                                                                                                                             |              |       |
| 5.70-7.20<br>5.70<br>6.00                 | U5 <sub>(SS)</sub> S PID                                                   | N19<br><0.1ppm |       | 0.87             |        | 6.50                       | at c.5.70m BGL medium dense.                                                                                                                                                                                                                                |              |       |
| 7.00                                      |                                                                            |                |       | 0.07             | ×      | · (0.70)                   | Grey brown silty SAND with lenses of silt and fragments of shell. Sand is fine to coarse.                                                                                                                                                                   |              | ١.    |
| 7.00<br>7.00<br>7.10<br>7.20-8.70         | J6 <sub>(U5)</sub><br>PID<br>B7 <sub>(U5)</sub>                            | <0.1ppm        |       | 0.17             | ×      | 7.20                       | Soft laminated red brown CLAY.                                                                                                                                                                                                                              |              | 70000 |
| 7.20-8.70<br>7.20<br>7.30<br>7.40         | U6 <sub>(SS)</sub><br>S<br>ES8 <sub>(U6)</sub><br>J9 <sub>(U6)</sub>       | N9             |       |                  |        | ]<br>-<br>-<br>-<br>-      |                                                                                                                                                                                                                                                             |              |       |

| Borin      | g Progres | s and Wat | er Observa         | tions             | L                                                                                      | iner Sample                            | e Informatio                           | General                         |                                                                                                                                                                                                                                                                                                                                                       |  |
|------------|-----------|-----------|--------------------|-------------------|----------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date       | Depth     | Casing    | Casing Dia<br>(mm) | Water<br>Standing | From - To                                                                              | Internal Dia<br>(mm)                   | Recovery<br>(%)                        | Subsampled                      | Remarks                                                                                                                                                                                                                                                                                                                                               |  |
| 15/10/2020 | 0.00      | 0.00      | 178                |                   | 0.00 - 1.20<br>1.20 - 2.70<br>2.70 - 4.20<br>4.20 - 5.70<br>5.70 - 7.20<br>7.20 - 8.70 | 116<br>116<br>116<br>116<br>116<br>116 | 100<br>100<br>100<br>100<br>100<br>100 | Yes<br>Yes<br>Yes<br>Yes<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-7.00m and 1 No. 50mm diameter slotted standpipe installed between 13.70-14.70m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush. |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

| Δ |
|---|
| _ |
|   |
|   |
|   |
|   |
|   |

# SONIC SAMPLE HOLE RECORD

| Project:    | Metal Processing Area Deep Soil ar               | nd Groundwat | er Investigation                                      |                           | Exploratory Hole No. |
|-------------|--------------------------------------------------|--------------|-------------------------------------------------------|---------------------------|----------------------|
| Client:     | South Tees Development Corporation               |              | mer Redcar Steelworks, Re<br>E:454743.455 N:522547.48 |                           | MPA_AUK_BH102        |
| Method (Equ | uipment):<br>Sonic Coring (Boart Longyear LS250) |              | Ground Level (m):<br>7.367                            | Start Date:<br>15/10/2020 | Sheet:<br>2 of 7     |

| SAMP                                   | LES & TI                                                                 | ESTS           |       |                  |        |                                                                                                       | STRATA                                                                                                                                                                                | m =                     |
|----------------------------------------|--------------------------------------------------------------------------|----------------|-------|------------------|--------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Depth                                  | Type<br>No                                                               | Test<br>Result | Water | Reduced<br>Level | Legend | Depth<br>(Thickness)                                                                                  | Description                                                                                                                                                                           | Instrument/<br>Backfill |
| 7.50<br>8.00                           | B10 <sub>(U6)</sub><br>PID                                               | <0.1ppm        |       |                  |        | -<br>-<br>-<br>-<br>-                                                                                 | Soft laminated red brown CLAY. (continued)                                                                                                                                            |                         |
| 8.70-10.20<br>8.70                     | U7<br>S                                                                  | N7             |       |                  |        | 7(3.50)                                                                                               |                                                                                                                                                                                       |                         |
| 10.20-11.70<br>10.20                   | U8 <sub>(SS)</sub>                                                       | N7             |       | -3.33            |        | 10.70                                                                                                 |                                                                                                                                                                                       |                         |
| 10.80<br>11.00                         | J11 <sub>(U8)</sub><br>B12 <sub>(U8)</sub>                               |                |       |                  | 0      | -                                                                                                     | Firm brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone.                             |                         |
| 11.70-13.20<br>11.70                   | U9<br>S                                                                  | N19            |       | -5.48            |        | (2.15)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                       |                         |
| 13.20-14.70<br>13.20<br>13.50<br>13.60 | U10 <sub>(SS)</sub><br>S<br>J13 <sub>(U10)</sub><br>B14 <sub>(U10)</sub> | N34            |       |                  |        | [(1.85)                                                                                               | Red brown very clayey GRAVEL/very gravelly CLAY. Gravel is fine to medium angular and includes mudstone weathered. (Engineer notes weathering profile of an extremely weak mudstone). |                         |
| 14.70                                  | S                                                                        | 50/55mm        |       | -7.33            |        | -<br>14.70<br>-<br>-<br>-<br>-<br>-<br>-                                                              | Complete at 14.70m BGL.                                                                                                                                                               |                         |

| Boring Progress and Water Observations |       |        |                    |                   | L                                                               | iner Sample                     | e Informatio             | General                |                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------|-------|--------|--------------------|-------------------|-----------------------------------------------------------------|---------------------------------|--------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                   | Depth | Casing | Casing Dia<br>(mm) | Water<br>Standing | From - To                                                       | Internal Dia<br>(mm)            | Recovery<br>(%)          | Subsampled             | Remarks                                                                                                                                                                                                                                                                                                                                               |
| 15/10/2020                             | 14.70 | 14.70  | 178                | 4.50              | 8.70 - 10.20<br>10.20 - 11.70<br>11.70 - 13.20<br>13.20 - 14.70 | 116<br>116<br>116<br>116<br>116 | 100<br>100<br>100<br>100 | No<br>Yes<br>No<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-7.00m and 1 No. 50mm diameter slotted standpipe installed between 13.70-14.70m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush. |

|                                           | ,                                                           |             |                             |                             |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|
| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909

## SONIC SAMPLE HOLE RECORD

| Project:   | Metal Processing Area Deep Soil an  | Exploratory Hole No.                                  |             |               |
|------------|-------------------------------------|-------------------------------------------------------|-------------|---------------|
| Client:    | South Tees Development Corporation  | ner Redcar Steelworks, Re<br>::454743.455 N:522547.48 |             | MPA_AUK_BH102 |
| Method (Ed |                                     | Ground Level (m):                                     | Start Date: | Sheet:        |
|            | Sonic Coring (Boart Longyear LS250) | 7.367                                                 | 15/10/2020  | 3 of 7        |





Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

## **SONIC SAMPLE HOLE RECORD**

PRELIM2

| Project | t:<br>Metal Processing Area Deep Soil an                                                                                                           | Exploratory Hole No. |                            |                           |               |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|---------------------------|---------------|
| Client: | ient: South Tees Development Corporation  South Tees Development Corporation  Location: Former Redcar Steelworks, Redcar E:454743.455 N:522547.488 |                      |                            |                           | MPA_AUK_BH102 |
| Method  | d (Equipment):<br>Sonic Coring (Boart Longyear LS250)                                                                                              |                      | Ground Level (m):<br>7.367 | Start Date:<br>15/10/2020 | Sheet: 4 of 7 |

# Figure MPA\_AUK\_BH102.3 MPA\_AUK\_BH102 2.70-4.20m BGL 4291 MPA\_AUK\_BHI02 2.70 420

# Figure MPA\_AUK\_BH102.4 MPA\_AUK\_BH102 4.20-5.70m BGL 4291 MPA\_AUK\_BHIO2 4.20 5.70

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



# **SONIC SAMPLE HOLE RECORD**

PRELIM2

| Project:   | oject:  Metal Processing Area Deep Soil and Groundwater Investigation |  |                                                       |             |               |  |
|------------|-----------------------------------------------------------------------|--|-------------------------------------------------------|-------------|---------------|--|
| Client:    | South Tees Development Corporation                                    |  | ner Redcar Steelworks, Re<br>::454743.455 N:522547.48 |             | MPA_AUK_BH102 |  |
| Method (Ed |                                                                       |  | Ground Level (m):                                     | Start Date: | Sheet:        |  |
|            | Sonic Coring (Boart Longyear LS250)                                   |  | 7.367                                                 | 15/10/2020  | 5 of 7        |  |

Figure MPA\_AUK\_BH102.5 MPA\_AUK\_BH102 5.70-7.20m BGL



Figure MPA\_AUK\_BH102.6 MPA\_AUK\_BH102 7.20-8.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909

## SONIC SAMPLE HOLE RECORD

PRELIM2

Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH102 South Tees Development Corporation E:454743.455 N:522547.488 Start Date: 15/10/2020 Ground Level (m): 7.367 Method (Equipment): Sonic Coring (Boart Longyear LS250) 6 of 7

# Figure MPA\_AUK\_BH102.7 MPA\_AUK\_BH102 8.70-10.20m BGL



Figure MPA\_AUK\_BH102.8 MPA\_AUK\_BH102 10.20-11.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

# **SONIC SAMPLE HOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an             | d Groundwate | er Investigation                                    |                           | Exploratory Hole No. |
|------------|------------------------------------------------|--------------|-----------------------------------------------------|---------------------------|----------------------|
| Client:    | South Tees Development Corporation             |              | ner Redcar Steelworks, Re<br>454743.455 N:522547.48 |                           | MPA_AUK_BH102        |
| Method (Ed | quipment): Sonic Coring (Boart Longyear LS250) |              | Ground Level (m):<br>7.367                          | Start Date:<br>15/10/2020 | Sheet: 7 of 7        |

# Figure MPA\_AUK\_BH102.9 MPA\_AUK\_BH102 11.70-13.20m BGL



Figure MPA\_AUK\_BH102.10 MPA\_AUK\_BH102 13.20-14.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

# SONIC SAMPLE HOLE RECORD

| Project:  | Metal Processing Area Deep Soil an              | d Groundwat | er Investigation                                      |                           | Exploratory Hole No. |
|-----------|-------------------------------------------------|-------------|-------------------------------------------------------|---------------------------|----------------------|
| Client:   | South Tees Development Corporation              |             | ner Redcar Steelworks, Re<br>::454535.206 N:522579.74 |                           | MPA_AUK_BH103        |
| Method (E | Equipment): Sonic/Coring (Boart Longyear LS250) |             | Ground Level (m):<br>6.700                            | Start Date:<br>14/10/2020 | Sheet:<br>1 of 2     |

| SAMPI                                             | LES & T                                                                            | ESTS                |       |                  |        |                                                                                                                                   | STRATA                                                                                                                                                                                                                                                      | ent/                                   |
|---------------------------------------------------|------------------------------------------------------------------------------------|---------------------|-------|------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Depth                                             | Type<br>No                                                                         | Test<br>Result      | Water | Reduced<br>Level | Legend | Depth<br>(Thickness)                                                                                                              | Description                                                                                                                                                                                                                                                 | Instrument/<br>Backfill                |
| 0.00-1.20<br>0.60<br>0.80                         | J1 <sub>(U1)</sub> B2 <sub>(U1)</sub>                                              |                     |       |                  |        |                                                                                                                                   | MADE GROUND (Brown green and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and includes slag. Slag content is 75-100%. Slag is vesicular). | 83888888888888888888888888888888888888 |
| 1.20-2.70<br>1.20                                 | PID<br>U2<br>S                                                                     | <0.1ppm<br>70/225mm |       |                  |        |                                                                                                                                   | at c.1.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                               |                                        |
| 2.00                                              | PID                                                                                | <0.1ppm             |       |                  |        | (5.30)                                                                                                                            |                                                                                                                                                                                                                                                             |                                        |
| 2.70-4.20<br>2.70<br>3.00                         | U3 <sub>(SS)</sub><br>S<br>PID                                                     | 50/165mm<br><0.1ppm |       |                  |        | (0.30)                                                                                                                            | at c.2.70m BGL very dense/cobble obstruction.                                                                                                                                                                                                               |                                        |
| 3.60<br>3.80<br>4.00                              | J3 <sub>(U3)</sub><br>B4 <sub>(U3)</sub><br>PID                                    | <0.1ppm             |       |                  |        | <del>c</del> |                                                                                                                                                                                                                                                             |                                        |
| 4.20-5.70<br>4.20                                 | U4 <sub>(SS)</sub><br>S                                                            | N40                 |       |                  |        |                                                                                                                                   | at c.4.20m BGL dense.                                                                                                                                                                                                                                       |                                        |
| 5.00<br>5.00                                      | ES5 <sub>(U4)</sub><br>PID                                                         | <0.1ppm             |       | 1.40             | ×      | 5.30                                                                                                                              | Grey brown silty SAND with silt lenses. Sand is fine to coarse.                                                                                                                                                                                             |                                        |
| 5.70-7.20<br>5.70<br>6.00                         | U5 <sub>(SS)</sub><br>S<br>PID                                                     | N5<br><0.1ppm       |       | 0.90             |        | 5.80<br>-<br>-<br>-<br>-                                                                                                          | Soft laminated red brown CLAY.                                                                                                                                                                                                                              |                                        |
| 6.60<br>6.80<br>7.00<br>7.20-8.70<br>7.20<br>7.20 | J6 <sub>(U5)</sub> B7 <sub>(U5)</sub> PID U6 <sub>(SS)</sub> ES8 <sub>(U6)</sub> S | <0.1ppm             |       |                  |        |                                                                                                                                   |                                                                                                                                                                                                                                                             |                                        |
|                                                   |                                                                                    |                     |       |                  |        | (3.90)                                                                                                                            |                                                                                                                                                                                                                                                             |                                        |

| Borir      | ng Progres | s and Wat | er Observa         | ations            | L           | iner Sample          | e Informatio    | General    |                                                                                                |
|------------|------------|-----------|--------------------|-------------------|-------------|----------------------|-----------------|------------|------------------------------------------------------------------------------------------------|
| Date       | Depth      | Casing    | Casing Dia<br>(mm) | Water<br>Standing | From - To   | Internal Dia<br>(mm) | Recovery<br>(%) | Subsampled | Remarks                                                                                        |
| 14/10/2020 | 0.00       | 0.00      | 178                |                   | 0.00 - 1.20 | 116                  | 100             | Yes        | (1) Description derived from drillers daily report.                                            |
|            |            |           |                    |                   | 1.20 - 2.70 | 116                  | 100             | No         | (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted |
|            |            |           |                    |                   | 2.70 - 4.20 | 116                  | 100             | Yes        | standpipe installed between 1.00-6.00m and 1 No.                                               |
|            |            |           |                    |                   | 4.20 - 5.70 | 116                  | 100             | Yes        | 50mm diameter slotted standpipe installed between                                              |
|            |            |           |                    |                   | 5.70 - 7.20 | 116                  | 100             | Yes        | 13.40-17.40m BGL respectively.                                                                 |
|            |            |           |                    |                   | 7.20 - 8.70 | 116                  | 100             | Yes        | (4) UXO testing during drilling. (5) Advanced between 0.00-11.70m BGL using water flush.       |
|            |            |           |                    |                   |             |                      |                 |            |                                                                                                |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|

| <u> </u>       | Regional Office: | Unit 20 Stella Gill Industrial Esiate, Petron Feir, Chester-le-Street, Co. Duffam, Driz 2RG<br>Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL | Tel: 0 |
|----------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| #=<br><b>G</b> |                  | SONIC SAMPLE HOLE RECOR                                                                                                                                             | RD     |
| 69             |                  |                                                                                                                                                                     |        |

| Project:   | Metal Processing Area Deep Soil an               | Metal Processing Area Deep Soil and Groundwater Investigation |                                                       |                           |                  |  |  |  |  |  |  |  |
|------------|--------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------|------------------|--|--|--|--|--|--|--|
| Client:    | South Tees Development Corporation               |                                                               | mer Redcar Steelworks, Re<br>E:454535.206 N:522579.74 |                           | MPA_AUK_BH103    |  |  |  |  |  |  |  |
| Method (Eq | uipment):<br>Sonic/Coring (Boart Longyear LS250) |                                                               | Ground Level (m):<br>6.700                            | Start Date:<br>14/10/2020 | Sheet:<br>2 of 2 |  |  |  |  |  |  |  |

| SAMP                                                  | LES & TI                                                                                                           | ESTS           |       |                  |        | STRATA               |                                                                                                                                                                                                                                                      |                               |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------|-------|------------------|--------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
| Depth                                                 | Type<br>No                                                                                                         | Test<br>Result | Water | Reduced<br>Level | Legend | Depth<br>(Thickness) | Description                                                                                                                                                                                                                                          | <br> Instrument/<br> Backfill |  |  |
| 8.70-10.20<br>8.70                                    | PID U7 <sub>(SS)</sub> S                                                                                           | <0.1ppm        |       |                  |        |                      | Soft laminated red brown CLAY. (continued)                                                                                                                                                                                                           |                               |  |  |
| 9.50<br>9.60<br>9.90<br>10.00<br>10.20-11.70<br>10.20 | J9 <sub>(U7)</sub><br>B10 <sub>(U7)</sub><br>J11 <sub>(U7)</sub><br>B12 <sub>(U7)</sub><br>U8 <sub>(SS)</sub><br>S | N25            |       | -3.00            |        | 9.70                 | Firm brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone.                                                                                            |                               |  |  |
| 11.00                                                 | J13 <sub>(U8)</sub> B14 <sub>(U8)</sub>                                                                            |                |       |                  |        | (0.90)               | Red brown very clayey GRAVEL/very gravelly CLAY. Gravel is fine to medium angular and includes mudstone weathered. (Engineer notes weathering profile of an extremely weak mudstone).  Boring complete at 11.70m BGL - continued by rotary drilling. |                               |  |  |

| Borin      | g Progres | s and Wat | er Observa         | itions            | Liner Sample Information      |                      |                 |            | General                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------|-----------|-----------|--------------------|-------------------|-------------------------------|----------------------|-----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Date       | Depth     | Casing    | Casing Dia<br>(mm) | Water<br>Standing | From - To                     | Internal Dia<br>(mm) | Recovery<br>(%) | Subsampled | Remarks                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 14/10/2020 | 11.70     | 11.70     | 178                |                   | 8.70 - 10.20<br>10.20 - 11.70 | 116<br>116           | 100<br>100      | Yes<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-6.00m and 1 No. 50mm diameter slotted standpipe installed between 13.40-17.40m BGL respectively. (4) UXO testing during drilling. (5) Advanced between 0.00-11.70m BGL using water flush. |  |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|

Head Office: Regional Office Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2Ri

Tel: 0191 387 4700 Fax: 0191 387 4710

Project:

Client:

# DRILLHOLE RECORD PRELIM2 Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. South Tees Development Corporation | Location: Former Redcar Steelworks, Redcar | MPA\_AUK\_BH103

|          | South Tees Development Corporation |               |       |          |           |                       |                                               | Former Redcar Steelworks, Redcar MPA_AUK_<br>E:454535.206 N:522579.746 |                                                                              |                            |                           |                                    | BH103                   |
|----------|------------------------------------|---------------|-------|----------|-----------|-----------------------|-----------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------|---------------------------|------------------------------------|-------------------------|
| Method ( | Equipme                            | ent):<br>So   | nic/C | oring (E | Boart Loi | ngyear LS             | S250)                                         |                                                                        | Ground Level (m):<br>6.700                                                   | 22313.14                   | Start Date:<br>14/10/2020 | Sheet: 1 of 7                      |                         |
| RUN      | DETA                               | AILS          |       |          |           |                       |                                               | STRATA                                                                 |                                                                              |                            |                           |                                    |                         |
| Depth    | TCR<br>(SCR)                       | Fracture      | Water | Reduced  | Legend    | Depth                 |                                               |                                                                        | Description                                                                  |                            |                           |                                    |                         |
| (Core Ø) | RQD                                | Frac          | Wa    | Level    | Legend    | (Thickness)           |                                               | Discontinuity                                                          | Detail                                                                       |                            | Ma                        | n                                  | Instrument/<br>Backfill |
| 11.70    | 100<br>(87)<br>63                  | 6<br>6        |       | -5.00    |           | 11.70                 | 11.90-13.20m<br>spaced planar                 | subhorizontal                                                          | (10-20 degrees) closely<br>gh undulating smooth<br>d (clay) discontinuities. | Extreme<br>MUDST<br>weathe | TONE partial              | and grey/green<br>ly to distinctly |                         |
| (92mm)   |                                    |               |       |          |           |                       |                                               |                                                                        |                                                                              |                            |                           |                                    |                         |
| 13.20    | 97<br>(90)<br>65                   | NR<br>NI<br>8 |       |          |           | -<br>-<br>-<br>-<br>- | 13.25-13.30m<br>13.30-13.70m<br>spaced planar | subhorizontal<br>and irregular rou                                     | (10-20 degrees) closely<br>gh undulating smooth<br>d (clay) discontinuities. |                            |                           |                                    | 000                     |
| (92mm)   |                                    | NI 8          |       |          |           |                       | spaced planar                                 | subhorizontal                                                          | (10-20 degrees) closely<br>gh undulating smooth<br>d (clay) discontinuities. |                            |                           |                                    |                         |
| 14.70    | 100<br>(50)<br>43                  | NI            |       |          |           | (5.70)                | 14.70-15.45m                                  | non-intact.                                                            |                                                                              |                            |                           |                                    |                         |
| (92mm)   |                                    | 9             |       |          |           | -<br>-                | spaced planar                                 | r and irregular rou                                                    | (10-20 degrees) closely<br>gh undulating smooth<br>d (clay) discontinuities. |                            |                           |                                    |                         |

| Drilling   | g Progress and                            | l Water Obser | vations           | Standa | ard Pene | tration Test | Flush         |       |                | General                                                                                                                                                                                                                                                                                                                                                                     |                             |  |  |
|------------|-------------------------------------------|---------------|-------------------|--------|----------|--------------|---------------|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
| Date       | Depth                                     | Casing        | Water<br>Standing | Depth  | Туре     | Result       | From - To     | Туре  | Returns<br>(%) | Rer                                                                                                                                                                                                                                                                                                                                                                         | Remarks                     |  |  |
| 14/10/2020 | 11.70                                     | 11.70         |                   | 11.70  | S        | 50/245mm     | 11.70 - 17.40 | Water | 100            | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-6.00m and 1 No. 50mm diameter slotted standpipe installed between 13.40-17.40m BGL respectivel (4) UXO testing during drilling. (5) Advanced between 0.00-11.70m BGL using water flush. |                             |  |  |
|            | All dimensions in metres<br>Scale 1:25.00 |               |                   |        |          | tion of syn  |               | Chec  | ked by:        | Logged by:<br>D. Portsmouth                                                                                                                                                                                                                                                                                                                                                 | Contract No.<br><b>4291</b> |  |  |

| <b>A</b> | Head Office:<br>Regional Office: | Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL | Tel: 0191 387 4700 Fax: (<br>Tel: 01772 735 300 Fax: ( |
|----------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|          |                                  | DRILLHOLE RECORD                                                                                                                                                |                                                        |
| Project: | Motal Proc                       | pageing Area Doop Sail and Croundwater Investigation                                                                                                            |                                                        |

PRELIM2

| Project:    | Metal Processing Area Deep Soil a                | nd Groundwater Investigation                  | Exploratory Hole No. |
|-------------|--------------------------------------------------|-----------------------------------------------|----------------------|
| Client:     | South Tees Development Corporation               | MPA_AUK_BH103                                 |                      |
| Method (Equ | uipment):<br>Sonic/Coring (Boart Longyear LS250) | Ground Level (m): Start Date: 6.700 14/10/202 | Sheet: 2 of 7        |
|             | NETA II O                                        | OTDATA                                        |                      |

| RUN      | RUN DETAILS         |                   |       | STRATA  |        |                                |                                                                                                                                                                  |                                                                                           |                         |  |  |  |
|----------|---------------------|-------------------|-------|---------|--------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------|--|--|--|
| Depth    | TCR<br>(SCR)<br>RQD | ture              | ter   | Reduced | Legend | Depth                          |                                                                                                                                                                  | ription                                                                                   | Instrument/<br>Backfill |  |  |  |
| (Core Ø) | RQD                 | Fracture<br>Index | Water | Level   | Legena | (Thickness)                    | Discontinuity Detail                                                                                                                                             | Main                                                                                      |                         |  |  |  |
| 16.20    |                     |                   |       |         |        | -<br>-<br>-                    |                                                                                                                                                                  | Extremely weak red and grey/green MUDSTONE partially to distinctly weathered. (continued) |                         |  |  |  |
|          | 100<br>(50)<br>25   | NI                |       |         |        | -<br>-<br>-                    | 16.20-16.80m non-intact.                                                                                                                                         |                                                                                           |                         |  |  |  |
| (92mm)   |                     | 8                 |       | -10.70  |        | -<br>-<br>-<br>-<br>-<br>17.40 | 16.80-17.40m subhorizontal (10-20 degrees) Closely spaced planar and irregular rough undulating smooth and rough open and tight infilled (clay) discontinuities. |                                                                                           |                         |  |  |  |
|          |                     |                   |       |         |        |                                |                                                                                                                                                                  | Complete at 17.40m BGL.                                                                   |                         |  |  |  |

| Drilling Progress and Water Observations        |       |        |                   | Standa | ard Pene  | tration Test | Flush     |            |                | General                                                                                                                                                                                                                                                                                                                                                                       |  |
|-------------------------------------------------|-------|--------|-------------------|--------|-----------|--------------|-----------|------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date                                            | Depth | Casing | Water<br>Standing | Depth  | Туре      | Result       | From - To | Туре       | Returns<br>(%) | Remarks                                                                                                                                                                                                                                                                                                                                                                       |  |
| 14/10/2020                                      | 17.40 | 11.70  | 3.07              | 17.40  | S         | 50/130mm     |           |            |                | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-6.00m and 1 No. 50mm diameter slotted standpipe installed between 13.40-17.40m BGL respectively. (4) UXO testing during drilling. (5) Advanced between 0.00-11.70m BGL using water flush. |  |
| All dimensions in metres For explanation of syn |       |        |                   |        | nbols and | Chec         | ked by:   | Logged by: | Contract No.   |                                                                                                                                                                                                                                                                                                                                                                               |  |

D. Portsmouth 4291 abbreviations see Key Sheets Scale 1:25.00

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



# **DRILLHOLE RECORD**

PRELIM2

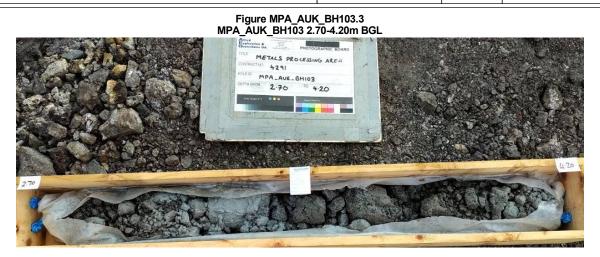
Project: Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH103 South Tees Development Corporation E:454535.206 N:522579.746
| Ground Level (m): | S 6.700 Start Date: 14/10/2020 Method (Equipment): Sonic/Coring (Boart Longyear LS250) 3 of 7

# Figure MPA\_AUK\_BH103.1 MPA\_AUK\_BH103 0.00-1.20m BGL



# Figure MPA\_AUK\_BH103.2 MPA\_AUK\_BH103 1.20-2.70m BGL




Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an  | Exploratory Hole No.                                  |               |        |
|------------|-------------------------------------|-------------------------------------------------------|---------------|--------|
| Client:    | South Tees Development Corporation  | ner Redcar Steelworks, Re<br>::454535.206 N:522579.74 | MPA_AUK_BH103 |        |
| Method (Eq |                                     | Ground Level (m):                                     | Start Date:   | Sheet: |
|            | Sonic/Coring (Boart Longyear LS250) | 6.700                                                 | 14/10/2020    | 4 of 7 |



# Figure MPA\_AUK\_BH103.4 MPA\_AUK\_BH103 4.20-5.70m BGL METALS PROCESSING AREA MPA\_AUK\_BHID3 M 4.20 ™ C

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an  | Exploratory Hole No.                                  |               |        |
|------------|-------------------------------------|-------------------------------------------------------|---------------|--------|
| Client:    | South Tees Development Corporation  | ner Redcar Steelworks, Re<br>::454535.206 N:522579.74 | MPA_AUK_BH103 |        |
| Method (Eq | uipment):                           | Ground Level (m):                                     | Start Date:   | Sheet: |
|            | Sonic/Coring (Boart Longyear LS250) | 6.700                                                 | 14/10/2020    | 5 of 7 |



# Figure MPA\_AUK\_BH103.6 MPA\_AUK\_BH103 7.20-8.70m BGL Gallerine & PHOTOGRAPHS TOARD METALS PROCESSING AREA MPA\_AUK\_BHI03

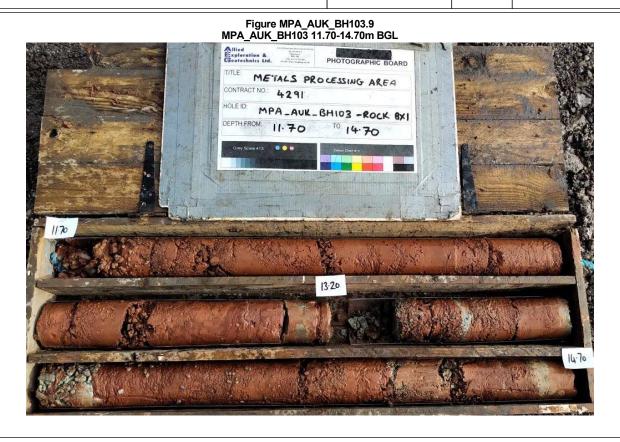
Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

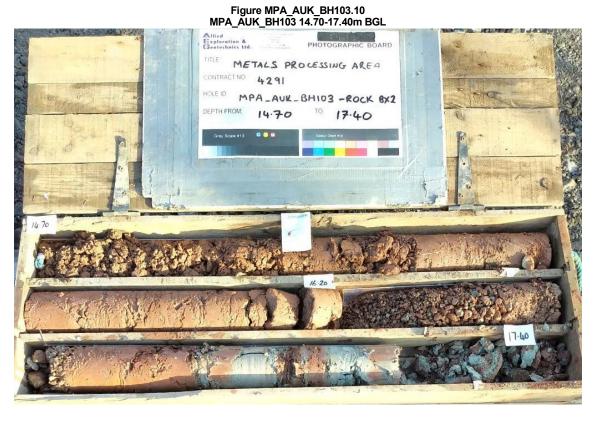


### **DRILLHOLE RECORD**

PRELIM2

Project: Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH103 South Tees Development Corporation E:454535.206 N:522579.746
| Ground Level (m): | S 6.700 Start Date: 14/10/2020 Method (Equipment): Sonic/Coring (Boart Longyear LS250) 6 of 7




Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909

# **DRILLHOLE RECORD**

| Project:   | oject:  Metal Processing Area Deep Soil and Groundwater Investigation |                                                                                               |                   |             |        |  |  |  |
|------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|-------------|--------|--|--|--|
| Client:    | South Tees Development Corporation                                    | evelopment Corporation   Location: Former Redcar Steelworks, Redcar E:454535.206 N:522579.746 |                   |             |        |  |  |  |
| Method (Eq |                                                                       |                                                                                               | Ground Level (m): | Start Date: | Sheet: |  |  |  |
|            | Sonic/Coring (Boart Longvear LS250)                                   |                                                                                               | 6.700             | 14/10/2020  | 7 of 7 |  |  |  |





Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

### SONIC SAMPLE HOLE RECORD

| Project: | Metal Processing Area Deep Soil an                  | Metal Processing Area Deep Soil and Groundwater Investigation |                                                       |                           |                  |  |  |  |  |  |
|----------|-----------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------|------------------|--|--|--|--|--|
| Client:  | South Tees Development Corporation                  |                                                               | mer Redcar Steelworks, Re<br>E:454595.142 N:522876.76 | MPA_AUK_BH104             |                  |  |  |  |  |  |
| Method ( | (Equipment):<br>Sonic Coring (Boart Longyear LS250) |                                                               | Ground Level (m):<br>6.289                            | Start Date:<br>13/10/2020 | Sheet:<br>1 of 7 |  |  |  |  |  |

| SAMI              | PLES & T                  | ESTS                         |       |                  |           |                            | STRATA                                                                                                                                                                                                                                               |                         |  |  |  |
|-------------------|---------------------------|------------------------------|-------|------------------|-----------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|
| Depth             | Type<br>No                | Test<br>Result               | Water | Reduced<br>Level | Legend    | Depth<br>(Thickness)       | Description                                                                                                                                                                                                                                          | Instrument/<br>Backfill |  |  |  |
| 0.00-1.20         | U1 <sub>(SS)</sub>        |                              |       |                  |           | 6-<br>6-<br>6-<br>6-<br>6- | MADE GROUND (Brown and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and include slag. Slag content is 75-100%. Slag is vesicular). |                         |  |  |  |
| 0.60              | J1 <sub>(U1)</sub>        |                              |       |                  | $\bowtie$ | -                          |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 0.80<br>1.00      | B2 <sub>(U1)</sub><br>PID | <0.1ppm                      |       |                  | $\bowtie$ | -                          |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 1.20-2.70         | 1                         | <ul><li>vo. ippili</li></ul> |       |                  | $\bowtie$ | <b>[</b>                   | at c.1.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                        |                         |  |  |  |
| 1.20              | U2<br>S                   | 50/100mm                     |       |                  |           |                            | at c. 1.2011 BGE very delise/cobble obstituction.                                                                                                                                                                                                    |                         |  |  |  |
| 2.00              | PID                       | <0.1ppm                      |       |                  |           | -<br>-<br>-<br>-<br>-      |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 2.70-4.20         | U3 <sub>(SS)</sub>        |                              |       |                  |           | <u> </u>                   | at c.2.70m BGL very dense/cobble obstruction.                                                                                                                                                                                                        |                         |  |  |  |
| 2.70<br>3.00      | S<br>  PID                | 50/15mm<br><0.1ppm           |       |                  | $\bowtie$ | (6.10)                     | ·                                                                                                                                                                                                                                                    |                         |  |  |  |
| 3.00              | PID                       | <0.1ppm                      |       |                  |           |                            |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 3.60              | J3 <sub>(U3)</sub>        |                              |       |                  |           | <b>F</b>                   |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 3.80              | B4 <sub>(U3)</sub>        |                              |       |                  | $\bowtie$ | E                          |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 4.00              | PID                       | <0.1ppm                      |       |                  | $\bowtie$ | <b>-</b>                   |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 4.20-5.70<br>4.20 | U4 <sub>(SS)</sub><br>S   | N41                          |       |                  |           | 6-<br>6-<br>6-<br>6-<br>6- | at c.4.20m BGL dense.                                                                                                                                                                                                                                |                         |  |  |  |
| 5.00              | PID                       | <0.1ppm                      |       |                  |           |                            |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 5.50              | ES5 <sub>(U4)</sub>       |                              |       |                  | $\bowtie$ | -                          |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 5.70-7.20         | U5 <sub>(SS)</sub>        | NO                           |       |                  |           | -                          | at c.5.70m BGL loose.                                                                                                                                                                                                                                | · <del> </del>          |  |  |  |
| 5.70<br>6.00      | PID                       | N8<br><0.1ppm                |       | 0.19             | $\bowtie$ | 6.10                       |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 0.00              | 115                       | чолррш                       |       |                  | ×         |                            | Medium dense grey brown silty SAND with lenses of silt. Sand is fine to coarse.                                                                                                                                                                      |                         |  |  |  |
| 6.60              | J6 <sub>(U5)</sub>        |                              |       |                  | ×         | ļ                          |                                                                                                                                                                                                                                                      | 000                     |  |  |  |
| 6.80              | B7 <sub>(U5)</sub>        |                              |       |                  | ×         | -                          |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 7.00              | PID                       | <0.1ppm                      |       |                  | ×         | F                          |                                                                                                                                                                                                                                                      |                         |  |  |  |
| 7.20-8.70         | U6 <sub>(SS)</sub>        | Naa                          |       |                  | ×         | F                          |                                                                                                                                                                                                                                                      | 0                       |  |  |  |
| 7.20              | S                         | N11                          |       |                  | · . · . · | [                          |                                                                                                                                                                                                                                                      |                         |  |  |  |
|                   |                           |                              |       |                  | ×         | [                          |                                                                                                                                                                                                                                                      |                         |  |  |  |
|                   |                           |                              |       |                  | ×         | (3.60)                     |                                                                                                                                                                                                                                                      |                         |  |  |  |

|            |           |           |                    |                   | (====/      |                      |                 |            | 10 Ha                                                                                                 |
|------------|-----------|-----------|--------------------|-------------------|-------------|----------------------|-----------------|------------|-------------------------------------------------------------------------------------------------------|
| Borin      | g Progres | s and Wat | er Observa         | ations            | L           | iner Sample          | Informatio      | General    |                                                                                                       |
| Date       | Depth     | Casing    | Casing Dia<br>(mm) | Water<br>Standing | From - To   | Internal Dia<br>(mm) | Recovery<br>(%) | Subsampled | Remarks                                                                                               |
| 13/10/2020 | 0.00      | 0.00      | 178                |                   | 0.00 - 1.20 | 116                  | 100             | Yes        | (1) Description derived from drillers daily report.                                                   |
|            |           |           |                    |                   | 1.20 - 2.70 | 116                  | 100             | No         | (2) Inspection pit dug prior to drilling.                                                             |
|            |           |           |                    |                   | 2.70 - 4.20 | 116                  | 100             | Yes        | (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-6.00m and 1 No. |
|            |           |           |                    |                   | 4.20 - 5.70 | 116                  | 100             | Yes        | 50mm diameter slotted standpipe installed between                                                     |
|            |           |           |                    |                   | 5.70 - 7.20 | 116                  | 100             | Yes        | 6.50-9.00m BGL respectively.                                                                          |
|            |           |           |                    |                   | 7.20 - 8.70 | 116                  | 100             | Yes        | (4) UXO testing during drilling. (5) Advanced using water flush - 0% returns.                         |
|            |           |           |                    |                   |             |                      |                 |            |                                                                                                       |
|            |           |           |                    |                   |             |                      |                 |            |                                                                                                       |
|            |           |           |                    |                   |             |                      |                 |            |                                                                                                       |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of syr abbreviations see Ke |  | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br>4291 |
|-------------------------------------------|---------------------------------------------|--|-------------|-----------------------------|----------------------|

### **SONIC SAMPLE HOLE RECORD**

| Project: | Metal Processing Area Deep Soil an                  | Metal Processing Area Deep Soil and Groundwater Investigation |                                                       |                           |                  |  |  |  |  |  |
|----------|-----------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------|------------------|--|--|--|--|--|
| Client:  | South Tees Development Corporation                  |                                                               | mer Redcar Steelworks, Re<br>::454595.142 N:522876.76 | MPA_AUK_BH104             |                  |  |  |  |  |  |
| Method   | (Equipment):<br>Sonic Coring (Boart Longyear LS250) |                                                               | Ground Level (m):<br>6.289                            | Start Date:<br>13/10/2020 | Sheet:<br>2 of 7 |  |  |  |  |  |

| SAMPI                                  | ES & TI                                                               | ESTS           |       |                  |                                         |                                 | STRATA                                                                                                                                                                                                                                                                                                                                                            |                                         |  |  |
|----------------------------------------|-----------------------------------------------------------------------|----------------|-------|------------------|-----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| Depth                                  | Type<br>No                                                            | Test<br>Result | Water | Reduced<br>Level | Legend                                  | Depth<br>(Thickness)            | Description                                                                                                                                                                                                                                                                                                                                                       | Instrument/<br>Backfill                 |  |  |
| 8.00<br>8.00                           | ES8 <sub>(U6)</sub><br>PID                                            | <0.1ppm        |       |                  | × · · · · · · · · · · · · · · · · · · · | -<br>-<br>-<br>-<br>-<br>-<br>- | Medium dense grey brown silty SAND with lenses of silt. Sand is fine to coarse. <i>(continued)</i>                                                                                                                                                                                                                                                                | 000000000000000000000000000000000000000 |  |  |
| 8.70-10.20<br>8.70                     | U7 <sub>(SS)</sub>                                                    | N20            |       | 0.44             | × · · · · · · · · · · · · · · · · · · · |                                 |                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  |
| 9.80<br>10.00<br>10.20-11.70<br>10.20  | J9 <sub>(U7)</sub><br>B10 <sub>(U7)</sub><br>U8 <sub>(SS)</sub><br>S  | N7             |       | -3.41            |                                         | 9.70<br>                        | Soft laminated brown CLAY.                                                                                                                                                                                                                                                                                                                                        |                                         |  |  |
| 11.40<br>11.60<br>11.70-13.20<br>11.70 | J11 <sub>(U8)</sub><br>B12 <sub>(U8)</sub><br>U9 <sub>(SS)</sub><br>S | N27            |       | -5.41            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | (0.45)<br>11.70                 | Firm to stiff brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone.  Red brown orange very clayey GRAVEL/very gravelly CLAY. Gravel is fine to medium angular and includes mudstone weathered.  (Engineer notes weathering profile of an extremely weak mudstone). |                                         |  |  |
| 12.60<br>12.80                         | J13 <sub>(U9)</sub><br>B14 <sub>(U9)</sub>                            |                |       | 0.04             |                                         | 1000                            |                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  |
| 13.20                                  | S                                                                     | 50/120mm       |       | -6.91            | 0                                       | 13.20                           | Complete at 13.20m BGL.                                                                                                                                                                                                                                                                                                                                           |                                         |  |  |

| Borir      | Boring Progress and Water Observations |        |                    |                   |                                                | iner Sample          | e Informatio      | General           |                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------------|----------------------------------------|--------|--------------------|-------------------|------------------------------------------------|----------------------|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Date       | Depth                                  | Casing | Casing Dia<br>(mm) | Water<br>Standing | From - To                                      | Internal Dia<br>(mm) | Recovery<br>(%)   | Subsampled        | Remarks                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 13/10/2020 | 13.20                                  | 13.20  | 178                | 2.09              | 8.70 - 10.20<br>10.20 - 11.70<br>11.70 - 13.20 | 116<br>116<br>116    | 100<br>100<br>100 | Yes<br>Yes<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-6.00m and 1 No. 50mm diameter slotted standpipe installed between 6.50-9.00m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush - 0% returns. |  |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909



### SONIC SAMPLE HOLE RECORD

PRELIM2

Project: Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH104 South Tees Development Corporation E:454595.142 N:522876.762 Start Date: 13/10/2020 Ground Level (m): 6.289 Method (Equipment): Sonic Coring (Boart Longyear LS250) 3 of 7

### Figure MPA\_AUK\_BH104.1 MPA\_AUK\_BH104 0.00-1.20m BGL



### Figure MPA\_AUK\_BH104.2 MPA\_AUK\_BH104 1.20-2.70m BGL



Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

### SONIC SAMPLE HOLE RECORD

PRELIM2

Project: Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH104 South Tees Development Corporation E:454595.142 N:522876.762 Start Date: 13/10/2020 Ground Level (m): 6.289 Method (Equipment): Sonic Coring (Boart Longyear LS250) 4 of 7

Figure MPA\_AUK\_BH104.3 MPA\_AUK\_BH104 2.70-4.20m BGL METALS PROCESSING AREA MPA\_AUK\_BHIO4

### Figure MPA\_AUK\_BH104.4 MPA\_AUK\_BH104 4.20-5.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **SONIC SAMPLE HOLE RECORD**

PRELIM2

| Project:    | Metal Processing Area Deep Soil an               | Exploratory Hole No.                                  |                           |               |
|-------------|--------------------------------------------------|-------------------------------------------------------|---------------------------|---------------|
| Client:     | South Tees Development Corporation               | mer Redcar Steelworks, Re<br>::454595.142 N:522876.76 | MPA_AUK_BH104             |               |
| Method (Equ | uipment):<br>Sonic Coring (Boart Longyear LS250) | Ground Level (m):<br>6.289                            | Start Date:<br>13/10/2020 | Sheet: 5 of 7 |

### Figure MPA\_AUK\_BH104.5 MPA\_AUK\_BH104 5.70-7.20m BGL



### Figure MPA\_AUK\_BH104.6 MPA\_AUK\_BH104 7.20-8.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### SONIC SAMPLE HOLE RECORD

PRELIM2

| Project:   | Metal Processing Area Deep Soil and Groundwater Investigation |               |                            |                           |               |  |  |  |  |  |
|------------|---------------------------------------------------------------|---------------|----------------------------|---------------------------|---------------|--|--|--|--|--|
| Client:    | South Tees Development Corporation                            | MPA_AUK_BH104 |                            |                           |               |  |  |  |  |  |
| Method (Eq | pulpment): Sonic Coring (Boart Longyear LS250)                |               | Ground Level (m):<br>6.289 | Start Date:<br>13/10/2020 | Sheet: 6 of 7 |  |  |  |  |  |

Figure MPA\_AUK\_BH104.7 MPA\_AUK\_BH104 8.70-10.20m BGL



Figure MPA\_AUK\_BH104.8 MPA\_AUK\_BH104 10.20-11.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **SONIC SAMPLE HOLE RECORD**

PRELIM2

| Project: | Metal Processing Area Deep Soil an                  | Exploratory Hole No.                                                    |                           |               |
|----------|-----------------------------------------------------|-------------------------------------------------------------------------|---------------------------|---------------|
| Client:  | South Tees Development Corporation                  | Location:<br>Former Redcar Steelworks, Red<br>E:454595.142 N:522876.762 |                           | MPA_AUK_BH104 |
| Method   | (Equipment):<br>Sonic Coring (Boart Longyear LS250) | Ground Level (m):<br>6.289                                              | Start Date:<br>13/10/2020 | Sheet: 7 of 7 |

### Figure MPA\_AUK\_BH104.9 MPA\_AUK\_BH104 11.70-13.20m BGL



# ALLIED EXPLORATION & GEOTECHNICS LIMITED Head Office: Regional Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

### **SONIC SAMPLE HOLE RECORD**

| Project:    | Metal Processing Area Deep Soil an               |                                                       | Exploratory Hole No.       |                           |                  |
|-------------|--------------------------------------------------|-------------------------------------------------------|----------------------------|---------------------------|------------------|
| Client:     | South Tees Development Corporation               | mer Redcar Steelworks, Re<br>E:454460.535 N:522990.66 |                            | MPA_AUK_BH105             |                  |
| Method (Equ | uipment):<br>Sonic/Coring (Boart Longyear LS250) |                                                       | Ground Level (m):<br>6.368 | Start Date:<br>08/10/2020 | Sheet:<br>1 of 2 |

| SAMP                                      | LES & T                                                                    | ESTS               |       |                  |                                         |                      | STRATA                                                                                                                                                                                                                                                                                                                                   | ent/                    |
|-------------------------------------------|----------------------------------------------------------------------------|--------------------|-------|------------------|-----------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Depth                                     | Type<br>No                                                                 | Test<br>Result     | Water | Reduced<br>Level | Legend                                  | Depth<br>(Thickness) | Description                                                                                                                                                                                                                                                                                                                              | Instrument/<br>Backfill |
| 0.00-1.20                                 | U1 <sub>(SS)</sub>                                                         |                    |       | 5.82             |                                         | (0.55)<br>- 0.55     | MADE GROUND (Grey green sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and include slag. Slag content is 75-100%. Slag is vesicular).                                                                                         |                         |
| 0.70<br>0.80<br>1.00<br>1.20-2.70<br>1.20 | J1 <sub>(U1)</sub><br>B2 <sub>(U1)</sub><br>PID<br>U2<br>S                 | <0.1ppm<br>25/35mm |       |                  |                                         |                      | MADE GROUND (Brown and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Slag content is 100%. Slag is vesicular. Cobbles are subrounded and include slag. Slag content is 100%. Slag is vesicular). at c.1.20m BGL very dense/cobble obstruction. |                         |
| 2.00                                      | PID                                                                        | <0.1ppm            |       |                  |                                         |                      |                                                                                                                                                                                                                                                                                                                                          |                         |
| 2.70-4.20<br>2.70<br>3.00                 | U3 <sub>(SS)</sub><br>S<br>PID                                             | 50/25mm<br><0.1ppm |       |                  |                                         |                      | at c.2.70m BGL very dense/cobble obstruction.                                                                                                                                                                                                                                                                                            |                         |
| 3.70<br>3.80<br>4.00<br>4.20-5.70<br>4.20 | J3 <sub>(U3)</sub><br>B4 <sub>(U3)</sub><br>PID<br>U4 <sub>(SS)</sub><br>S | <0.1ppm<br>N51     |       |                  |                                         | (5.95)               | at c.4.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                                                                                                            |                         |
| 5.00<br>5.00                              | ES5 <sub>(U4)</sub><br>PID                                                 | <0.1ppm            |       |                  |                                         |                      |                                                                                                                                                                                                                                                                                                                                          |                         |
| 5.70-7.20<br>5.70<br>6.00                 | U5 <sub>(SS)</sub><br>S<br>PID                                             | N10<br><0.1ppm     |       | -0.13            |                                         | 6.50                 | at c.5.70m BGL loose and medium dense.                                                                                                                                                                                                                                                                                                   |                         |
| 6.60<br>6.80<br>7.00<br>7.20-8.70<br>7.20 | J6 <sub>(U5)</sub><br>B7 <sub>(U5)</sub><br>PID<br>U6 <sub>(SS)</sub><br>S | <0.1ppm<br>N27     |       | -0.13            | × × × · · · · · · · · · · · · · · · · · |                      | Medium dense grey brown silty SAND with lenses of silt. Sand is fine to coarse.                                                                                                                                                                                                                                                          |                         |

| Borin                                  | g Progres            | s and Wate           | er Observa         | tions             | Liner Sample Information                                                               |                                               |                                        |                                       | General                                                                                                                                                                                                                                                                                                                                               |  |
|----------------------------------------|----------------------|----------------------|--------------------|-------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date                                   | Depth                | Casing               | Casing Dia<br>(mm) | Water<br>Standing | From - To                                                                              | Internal Dia<br>(mm)                          | Recovery<br>(%)                        | Subsampled                            | Remarks                                                                                                                                                                                                                                                                                                                                               |  |
| 08/10/2020<br>08/10/2020<br>09/10/2020 | 0.00<br>1.20<br>1.20 | 0.00<br>0.00<br>0.00 | 178<br>178<br>178  | Dry<br>Dry        | 0.00 - 1.20<br>1.20 - 2.70<br>2.70 - 4.20<br>4.20 - 5.70<br>5.70 - 7.20<br>7.20 - 8.70 | 116<br>116<br>116<br>116<br>116<br>116<br>116 | 100<br>100<br>100<br>100<br>100<br>100 | Yes<br>No<br>Yes<br>Yes<br>Yes<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-6.50m and 1 No. 50mm diameter slotted standpipe installed between 16.70-20.70m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush. |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D.P/K.R.C | Contract No.<br>4291 |
|-------------------------------------------|-------------------------------------------------------------|-------------|-------------------------|----------------------|

### **SONIC SAMPLE HOLE RECORD**

| Project:   | Metal Processing Area Deep Soil ar                |                                                       | Exploratory Hole No.      |                  |
|------------|---------------------------------------------------|-------------------------------------------------------|---------------------------|------------------|
| Client:    | South Tees Development Corporation                | mer Redcar Steelworks, Re<br>E:454460.535 N:522990.66 |                           | MPA_AUK_BH105    |
| Method (Eq | quipment):<br>Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>6.368                            | Start Date:<br>08/10/2020 | Sheet:<br>2 of 2 |

| SAMP                                                           | LES & T                                                          | ESTS            |       |                  |                                         |                                                     | STRATA                                                                                                                                                                                                                                                                                                                                        | ent/                    |
|----------------------------------------------------------------|------------------------------------------------------------------|-----------------|-------|------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Depth                                                          | Type<br>No                                                       | Test<br>Result  | Water | Reduced<br>Level | Legend                                  | Depth<br>(Thickness)                                | Description                                                                                                                                                                                                                                                                                                                                   | Instrument/<br>Backfill |
| 8.50<br>8.70-10.20<br>8.70                                     | PID  ES8 <sub>(U6)</sub> U7 <sub>(SS)</sub> S                    | <0.1ppm         |       |                  | × · · · · × · · · · · · · · · · · · · · | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>(5.00) | Medium dense grey brown silty SAND with lenses of silt. Sand is fine to coarse. (continued)  at c.8.70m BGL dense.                                                                                                                                                                                                                            |                         |
| 9.60<br>9.80<br>10.20-11.70<br>10.20                           | J9 <sub>(U7)</sub><br>B10 <sub>(U7)</sub><br>U8<br>S             | N65             |       |                  | X                                       |                                                     | at c.10.20m BGL very dense.                                                                                                                                                                                                                                                                                                                   |                         |
| 11.70-13.20<br>11.70<br>12.60<br>12.80<br>13.20-14.70<br>13.20 | U9 <sub>(SS)</sub> J11 <sub>(U9)</sub> B12 <sub>(U9)</sub> U10 S | N30<br>50/275mm |       | -5.13<br>-5.33   |                                         | 11.50                                               | Firm brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone.  Red brown orange very clayey GRAVEL/very gravelly CLAY. Gravel is fine to medium angular and includes mudstone. (Engineer notes weathering profile of an extremely weak mudstone). |                         |
|                                                                |                                                                  |                 |       | -8.33            |                                         | 14.70                                               | Boring complete at 14.70m BGL - continued by rotary drilling.                                                                                                                                                                                                                                                                                 |                         |

| Borin                                  | g Progres               | s and Wate              | er Observa         | tions                | Liner Sample Information                                        |                      |                          |                        | General                                                                                                                                                                                                                                                                                                                                               |  |  |
|----------------------------------------|-------------------------|-------------------------|--------------------|----------------------|-----------------------------------------------------------------|----------------------|--------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Date                                   | Depth                   | Casing                  | Casing Dia<br>(mm) | Water<br>Standing    | From - To                                                       | Internal Dia<br>(mm) | Recovery<br>(%)          | Subsampled             | Remarks                                                                                                                                                                                                                                                                                                                                               |  |  |
| 09/10/2020<br>12/10/2020<br>12/10/2020 | 13.20<br>13.20<br>14.70 | 13.20<br>13.20<br>14.70 | 178<br>178<br>178  | 2.53<br>3.05<br>3.05 | 8.70 - 10.20<br>10.20 - 11.70<br>11.70 - 13.20<br>13.20 - 14.70 | 116<br>116           | 100<br>100<br>100<br>100 | Yes<br>No<br>Yes<br>No | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.00-6.50m and 1 No. 50mm diameter slotted standpipe installed between 16.70-20.70m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush. |  |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D.P/K.R.C | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-------------------------|-----------------------------|

### **DRILLHOLE RECORD**

| Project:  | Metal Processing Area Deep Soil an                 |                                                       | Exploratory Hole No.      |                  |
|-----------|----------------------------------------------------|-------------------------------------------------------|---------------------------|------------------|
| Client:   | South Tees Development Corporation                 | mer Redcar Steelworks, Re<br>E:454460.535 N:522990.66 | MPA_AUK_BH105             |                  |
| Method (I | Equipment):<br>Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>6.368                            | Start Date:<br>08/10/2020 | Sheet:<br>1 of 8 |

| RIIN          | DETA         | All S    |       |                  |        |                      |                                                                 | STRATA              |                 |                                              |                         |
|---------------|--------------|----------|-------|------------------|--------|----------------------|-----------------------------------------------------------------|---------------------|-----------------|----------------------------------------------|-------------------------|
| Depth         | TCR          |          | _     |                  |        |                      |                                                                 | Descr               | intion          |                                              | Instrument/<br>Backfill |
| &<br>(Core Ø) | (SCR)<br>RQD | Fracture | Water | Reduced<br>Level | Legend | Depth<br>(Thickness) | Discontinuity D                                                 |                     | iption          | Main                                         | Instru<br>Bac           |
| 14.70         | 100          | <u>ш</u> |       | -8.33            |        | 14.70                | 14.70-15.35m horizontal to sul                                  |                     | avtramalywaa    |                                              |                         |
| 14.70         | (85)<br>85   |          |       | -0.55            |        | - 14.70              | degrees) medium spaced planar                                   | locally undulating  | MUDSTONE of     | ak to weak red brown distinctly weathered to |                         |
|               | 65           |          |       |                  |        | -                    | smooth closed discontinuities.                                  |                     | residual with g | reen grey glauconitic                        |                         |
|               |              |          |       |                  |        | _                    |                                                                 |                     | interbeds.      |                                              |                         |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              |                         |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              |                         |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              |                         |
|               |              |          |       |                  |        | t                    |                                                                 |                     |                 |                                              |                         |
| (92mm)        |              | NI       |       |                  |        | -                    | 15.35-15.45m non-intact.                                        |                     |                 |                                              |                         |
| (92           |              | 5        |       |                  |        | -                    | 15.45-16.10m horizontal to sul degrees) medium spaced planar    | bhorizontal (0-10   |                 |                                              |                         |
|               |              |          |       |                  |        | -                    | smooth closed discontinuities.                                  | locally undulating  |                 |                                              |                         |
|               |              |          |       |                  |        | _                    |                                                                 |                     |                 |                                              |                         |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              |                         |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              |                         |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              |                         |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              |                         |
|               |              | NI       |       |                  |        | -                    | 16.10-16.15m non-intact.                                        |                     |                 |                                              |                         |
| 16.20         | 100          | 6        |       |                  |        | -                    | 16.15-16.30m horizontal to sul                                  |                     |                 |                                              |                         |
|               | (67)<br>47   | NI       |       |                  |        | -                    | degrees) medium spaced planar<br>smooth closed discontinuities. | locally undulating  |                 |                                              |                         |
|               | 47           | INI      |       |                  |        | _                    | 16.30-16.55m non-intact.                                        |                     |                 |                                              |                         |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              |                         |
|               |              | 6        | -     |                  |        |                      | 16.55-16.70m horizontal to sul                                  | hhorizontal (0-10   |                 |                                              |                         |
|               |              |          |       |                  |        |                      | degrees) medium spaced planar                                   | locally undulating  |                 |                                              |                         |
|               |              | NI       |       |                  |        |                      | smooth closed discontinuities.<br>16.60-16.70m 1 No. horizontal | I to subhorizontal  |                 |                                              | 0 = 0                   |
|               |              |          |       |                  |        |                      | (0-10 degrees) very closely spac                                | ed discontinuity.   |                 |                                              | 000                     |
| (92mm)        |              | 6        |       |                  |        | -                    | 16.70-16.85m non-intact.<br>16.85-17.70m horizontal to sul      | bhorizontal (0-10   |                 |                                              | 00                      |
| (92r          |              |          |       |                  |        | -                    | degrees) medium spaced planar<br>smooth closed discontinuities. | locally undulating  |                 |                                              |                         |
|               |              |          |       |                  |        | -                    | Simodificiosed discontinuides.                                  |                     |                 |                                              | 0 F0                    |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              | 000                     |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              | ° 30                    |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              | 100                     |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              | 1°0° #0                 |
|               |              |          |       |                  |        | Ī                    |                                                                 |                     |                 |                                              | 000                     |
| 17.70         |              |          |       |                  |        | t                    |                                                                 |                     |                 |                                              | 0 0                     |
| 17.70         | 100          | 8        | -     |                  |        | (6.00)               | 17.70-18.30m horizontal to sul                                  | bhorizontal (0-10   |                 |                                              | 000                     |
|               | (75)<br>62   |          |       |                  |        | -                    | degrees) closely to very closely s                              | spaced undulating   |                 |                                              | °0 0                    |
|               | 02           |          |       |                  |        | -                    | smooth locally stained (red brown                               | n) discontinuities. |                 |                                              | 100Pd                   |
|               |              |          |       |                  |        | L                    |                                                                 |                     |                 |                                              | 000                     |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              | 100 H                   |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              | 000                     |
|               |              |          |       |                  |        | [                    |                                                                 |                     |                 |                                              | 1º0P4                   |
|               |              | NI       | 1     |                  |        | Ī                    | 18.30-18.40m non-intact.                                        |                     |                 |                                              | 1°0 401                 |
| (92mm)        |              | 8        |       |                  |        | ŀ                    | 18.40-18.67m horizontal to sul                                  | bhorizontal (0-10   |                 |                                              | 0074                    |
| (921          |              |          |       |                  |        | }                    | degrees) closely to very closely s                              | spaced undulating   |                 |                                              | °0 ₽0                   |
|               |              |          |       |                  |        | }                    | smooth locally stained (red brown 18.56-18.60m non-intact.      | n) discontinuities. |                 |                                              | 1º0P1                   |
|               |              |          |       |                  |        |                      |                                                                 |                     |                 |                                              | Po Fo                   |

| Drilling   | Progress and              | l Water Obser | vations           | Standa | ard Pene | tration Test |                       | Flush |                | Ge                                                                                                              | neral                                                                                                      |
|------------|---------------------------|---------------|-------------------|--------|----------|--------------|-----------------------|-------|----------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Date       | Depth                     | Casing        | Water<br>Standing | Depth  | Туре     | Result       | From - To             | Туре  | Returns<br>(%) | Rer                                                                                                             | marks                                                                                                      |
| 12/10/2020 | 14.70                     | 14.70         | 3.05              |        |          |              | 14.70 - 20.70         | Water | 100            | (2) Inspection pit dug pri<br>(3) Double installation: 1<br>slotted standpipe installe<br>and 1 No. 50mm diamet | No. 25mm diameter<br>ad between 1.00-6.50m<br>er slotted standpipe<br>20.70m BGL respectively.<br>rilling. |
|            | nensions ii<br>Scale 1:25 |               |                   |        |          | tion of syn  | nbols and<br>y Sheets | Chec  | ked by:        | Logged by:<br>D.P/K.R.C                                                                                         | Contract No.<br>4291                                                                                       |

|   | 1 |
|---|---|
|   |   |
|   |   |
|   |   |
| U |   |

### **DRILLHOLE RECORD**

| Project:   | Metal Processing Area Deep Soil a                | nd Groundwat | er Investigation                                      |                           | Exploratory Hole No. |
|------------|--------------------------------------------------|--------------|-------------------------------------------------------|---------------------------|----------------------|
| Client:    | South Tees Development Corporation               |              | mer Redcar Steelworks, Re<br>::454460.535 N:522990.66 |                           | MPA_AUK_BH105        |
| Method (Eq | uipment):<br>Sonic/Coring (Boart Longyear LS250) | •            | Ground Level (m):<br>6.368                            | Start Date:<br>08/10/2020 | Sheet:<br>2 of 8     |

| RUI        | N DETA            | AILS         |       |         |        |                                                                                             | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               | nt/                     |
|------------|-------------------|--------------|-------|---------|--------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Depth<br>& | TCR               | Fracture     | Water | Reduced | Legend | Depth                                                                                       | Descr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ription                                                                                                                       | Instrument/<br>Backfill |
| (Core Ø    | (SCR)<br>RQD      |              | W     | Level   | Legena | (Thickness)                                                                                 | Discontinuity Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Main                                                                                                                          |                         |
| 19.20      | 100<br>(67)<br>44 | NI 6 NI 6 NI |       |         |        | -<br>-<br>-<br>-                                                                            | 18.67-18.73m non-intact.  18.73-18.86m horizontal to subhorizontal (0-10 degrees) closely to very closely spaced undulating smooth locally stained (red brown) discontinuities.  18.86-18.93m non-intact.  18.93-19.06m horizontal to subhorizontal (0-10 degrees) closely to very closely spaced undulating smooth locally stained (red brown) discontinuities.  19.06-19.12m non-intact.  19.12-19.20m horizontal to subhorizontal (0-10 degrees) closely to very closely spaced undulating smooth locally stained (red brown) discontinuities.  19.20-19.50m non-intact. | extremely weak to weak red brown MUDSTONE distinctly weathered to residual with green grey glauconitic interbeds. (continued) |                         |
| (шш26)     |                   | 6 NI 6       |       | -14.33  |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 19.50-19.85m horizontal to subhorizontal (0-10 degrees) closely to very closely spaced undulating smooth locally stained (red brown) discontinuities. 19.55-19.57m non-intact. 19.62-19.66m non-intact. 19.90-20.70m horizontal to subhorizontal (0-10 degrees) closely to very closely spaced undulating smooth locally stained (red brown) discontinuities. 20.02-20.04m non-intact.                                                                                                                                                                                      | from c.19.50m BGL weak with locally medium strong occasional white mineral veins.                                             |                         |
|            |                   |              |       |         |        | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Complete at 20.70m BGL.                                                                                                       |                         |

| Drilling   | Progress and              | Water Observ | /ations           | Standa | ard Pene | tration Test             |                       | Flush |                | Ge                                                                                                              | neral                                                                                                      |
|------------|---------------------------|--------------|-------------------|--------|----------|--------------------------|-----------------------|-------|----------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Date       | Depth                     | Casing       | Water<br>Standing | Depth  | Туре     | Result                   | From - To             | Туре  | Returns<br>(%) | Rer                                                                                                             | marks                                                                                                      |
| 12/10/2020 | 20.70                     | 14.70        |                   |        |          |                          |                       |       |                | (2) Inspection pit dug pri<br>(3) Double installation: 1<br>slotted standpipe installe<br>and 1 No. 50mm diamet | No. 25mm diameter<br>ad between 1.00-6.50m<br>er slotted standpipe<br>20.70m BGL respectively.<br>rilling. |
|            | nensions ii<br>Scale 1:25 |              |                   |        |          | tion of syr<br>ns see Ke | nbols and<br>y Sheets | Che   | cked by:       | Logged by:<br>D.P/K.R.C                                                                                         | Contract No.<br>4291                                                                                       |

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an  | d Groundwat | er Investigation                                |             | Exploratory Hole No. |
|------------|-------------------------------------|-------------|-------------------------------------------------|-------------|----------------------|
| Client:    | South Tees Development Corporation  |             | ner Redcar Steelworks,<br>::454460.535 N:522990 |             | MPA_AUK_BH105        |
| Method (Eq |                                     |             | Ground Level (m):                               | Start Date: | Sheet:               |
| 1          | Sonic/Coring (Boart Longyear LS250) |             | 6.368                                           | 08/10/2020  | 3 of 8               |

### Figure MPA\_AUK\_BH105.1 MPA\_AUK\_BH105 0.00-1.20m BGL



### Figure MPA\_AUK\_BH105.2 MPA\_AUK\_BH105 1.20-2.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:    | Metal Processing Area Deep Soil an  | d Groundwat | er Investigation                                      |            | Exploratory Hole No. |
|-------------|-------------------------------------|-------------|-------------------------------------------------------|------------|----------------------|
| Client:     | South Tees Development Corporation  |             | ner Redcar Steelworks, Re<br>::454460.535 N:522990.66 |            | MPA_AUK_BH105        |
| Method (Equ |                                     |             |                                                       |            | Sheet:               |
|             | Sonic/Coring (Boart Longyear LS250) |             | 6.368                                                 | 08/10/2020 | 4 of 8               |

### Figure MPA\_AUK\_BH105.3 MPA\_AUK\_BH105 2.70-4.20m BGL Attled Exploration & Fr. PHOTOGRAPHIC BOARD METALS PROCESSING AREA



### Figure MPA\_AUK\_BH105.4 MPA\_AUK\_BH105 4.20-5.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an             | d Groundwat | er Investigation                                      |                           | Exploratory Hole No. |
|------------|------------------------------------------------|-------------|-------------------------------------------------------|---------------------------|----------------------|
| Client:    | South Tees Development Corporation             |             | mer Redcar Steelworks, Re<br>E:454460.535 N:522990.66 |                           | MPA_AUK_BH105        |
| Method (Ed | quipment): Sonic/Coring (Boart Longyear LS250) |             | Ground Level (m):<br>6.368                            | Start Date:<br>08/10/2020 | Sheet: 5 of 8        |

# Figure MPA\_AUK\_BH105.5 MPA\_AUK\_BH105 5.70-7.20m BGL Expirence & PHOTOGRAPHIC BOARD METALS PROCESSING AREA MPA\_AUK\_BHIDS

# Figure MPA\_AUK\_BH105.6 MPA\_AUK\_BH105 7.20-8.70m BGL METALS PROCESSING AREA 4291 MPA\_AUK\_BHIDS 7.20 10 8.70

Sonic/Coring (Boart Longyear LS250)

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

Start Date: 08/10/2020

6 of 8



Project:

Client:

Method (Equipment):

### **DRILLHOLE RECORD** PRELIM2 Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. Former Redcar Steelworks, Redcar MPA\_AUK\_BH105 South Tees Development Corporation



# Figure MPA\_AUK\_BH105.8 MPA\_AUK\_BH105 10.20-11.70m BGL METALS PROCESSING AREA 100 4291 MPA\_AUK\_8H105 FERM 10-20 10 11-7-0

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:  | Metal Processing Area Deep Soil an              | d Groundwat | er Investigation                                      |                           | Exploratory Hole No. |
|-----------|-------------------------------------------------|-------------|-------------------------------------------------------|---------------------------|----------------------|
| Client:   | South Tees Development Corporation              |             | ner Redcar Steelworks, Re<br>::454460.535 N:522990.66 |                           | MPA_AUK_BH105        |
| Method (E | Equipment): Sonic/Coring (Boart Longyear LS250) |             | Ground Level (m):<br>6.368                            | Start Date:<br>08/10/2020 | Sheet: 7 of 8        |

# Figure MPA\_AUK\_BH105.9 MPA\_AUK\_BH105 11.70-13.20m BGL Controller & Fig. PROTOGRAPHIC BO METALS PROCESSING AREA CT NO 4291 MPA\_AUK\_BHIDS 11.70 19 13.20

# Figure MPA\_AUK\_BH105.10 MPA\_AUK\_BH105 13.20-14.70m BGL

Contract No.: 4291

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909

### **DRILLHOLE RECORD**

| Project: | Metal Processing Area Deep Soil an              | nd Groundwat | er Investigation                                |                           | Exploratory Hole No. |
|----------|-------------------------------------------------|--------------|-------------------------------------------------|---------------------------|----------------------|
| Client:  | South Tees Development Corporation              |              | ner Redcar Steelworks,<br>::454460.535 N:522990 |                           | MPA_AUK_BH105        |
| Method ( | Equipment): Sonic/Coring (Boart Longyear LS250) | •            | Ground Level (m):<br>6.368                      | Start Date:<br>08/10/2020 | Sheet: 8 of 8        |





### SONIC SAMPLE HOLE RECORD

| Project:    | Metal Processing Area Deep Soil a                | nd Groundwat | er Investigation                                |                        | Exploratory Hole No. |
|-------------|--------------------------------------------------|--------------|-------------------------------------------------|------------------------|----------------------|
| Client:     | South Tees Development Corporation               |              | mer Redcar Steelworks,<br>E:454662.064 N:522591 |                        | MPA_AUK_BH106        |
| Method (Equ | uipment):<br>Sonic/Coring (Boart Longyear LS250) |              | Ground Level (m):<br>7.511                      | Start Date: 26/10/2020 | Sheet:<br>1 of 2     |

| SAMP                      | LES & T                                  | ESTS                |       |                  |         |                            | STRATA                                                                                                                                                                                                                                                     | lent/                                             |
|---------------------------|------------------------------------------|---------------------|-------|------------------|---------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Depth                     | Type<br>No                               | Test<br>Result      | Water | Reduced<br>Level | Legend  | Depth<br>(Thickness)       | Description                                                                                                                                                                                                                                                | Instrument/                                       |
| 0.00-1.20<br>0.60<br>0.80 | J1 <sub>(U1)</sub><br>B2 <sub>(U1)</sub> |                     |       |                  |         | -                          | MADE GROUND (Brown green and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and include slag. Slag content is 75-100%. Slag is vesicular). |                                                   |
| 1.00                      | PID                                      | <0.1ppm             |       |                  |         | -                          |                                                                                                                                                                                                                                                            | MH                                                |
| 1.20-2.70<br>1.20         | U2<br>S                                  | 50/75mm             |       |                  |         | -<br> -<br> -<br> -<br> -  | at c.1.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                              | - <del>                                    </del> |
| 2.00                      | PID                                      | <0.1ppm             |       |                  |         | -<br>-<br>-<br>-<br>-      |                                                                                                                                                                                                                                                            |                                                   |
| 2.70-4.20<br>2.70<br>3.00 | U3 <sub>(SS)</sub><br>S<br>PID           | N18<br><0.1ppm      |       |                  |         |                            | at c.2.70m BGL medium dense.                                                                                                                                                                                                                               |                                                   |
| 3.60<br>3.80              | J3 <sub>(U3)</sub><br>B4 <sub>(U3)</sub> |                     |       |                  |         | (7.00)<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                                            |                                                   |
| 4.00<br>4.20-5.70<br>4.20 | PID<br>U4 <sub>(SS)</sub><br>S           | <0.1ppm<br>50/150mm |       |                  |         |                            | at c.4.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                              |                                                   |
| 5.00<br>5.10              | PID<br>ES5 <sub>(U4)</sub>               | <0.1ppm             |       |                  |         |                            |                                                                                                                                                                                                                                                            |                                                   |
| 5.70-7.20<br>5.70<br>6.00 | U5 <sub>(SS)</sub><br>S<br>PID           | N17<br><0.1ppm      |       |                  |         | -                          | at c.5.70m BGL medium dense.                                                                                                                                                                                                                               |                                                   |
| 6.60                      | J6 <sub>(U5)</sub>                       |                     |       |                  |         | -<br>-<br>-<br>-           |                                                                                                                                                                                                                                                            |                                                   |
| 6.80<br>7.00              | B7 <sub>(U5)</sub><br>PID                | <0.1ppm             |       | 0.51             | × × × , | 7.00<br>-                  | Grey black slightly sandy SILT. Sand is fine to medium.                                                                                                                                                                                                    |                                                   |
| 7.20-8.70<br>7.20         | U6 <sub>(SS)</sub>                       | N6                  |       | 0.21             | × × ×   | 7.30<br>-                  | Soft red brown laminated CLAY.                                                                                                                                                                                                                             |                                                   |
|                           |                                          |                     |       |                  |         |                            |                                                                                                                                                                                                                                                            |                                                   |

| Borin      | g Progres | s and Wat | er Observa         | tions             | L                                                                                      | iner Sample                            | e Informatio                           | General                               |                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------|-----------|-----------|--------------------|-------------------|----------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date       | Depth     | Casing    | Casing Dia<br>(mm) | Water<br>Standing |                                                                                        |                                        |                                        |                                       | Remarks                                                                                                                                                                                                                                                                                                                                                              |  |
| 26/10/2020 | 0.00      | 0.00      | 178                |                   | 0.00 - 1.20<br>1.20 - 2.70<br>2.70 - 4.20<br>4.20 - 5.70<br>5.70 - 7.20<br>7.20 - 8.70 | 116<br>116<br>116<br>116<br>116<br>116 | 100<br>100<br>100<br>100<br>100<br>100 | Yes<br>No<br>Yes<br>Yes<br>Yes<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Triple installation: 2 No. 25mm diameter slotted standpipes installed between 1.00-6.00 and 7.50-9.50m and 1 No. 50mm diameter slotted standpipe installed between 16.40-20.40m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush. |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

|   | Δ |
|---|---|
|   | ~ |
|   |   |
|   |   |
|   | _ |
|   |   |
|   |   |
|   | _ |
| Ľ | 7 |

### SONIC SAMPLE HOLE RECORD

| Project:    | roject: Metal Processing Area Deep Soil and Groundwater Investigation |                                                                                                          |                            |                        |                  |  |  |  |  |
|-------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------|--|--|--|--|
| Client:     | South Tees Development Corporation                                    | South Tees Development Corporation  Location: Former Redcar Steelworks, Redcar E:454662.064 N:522591.697 |                            |                        |                  |  |  |  |  |
| Method (Equ | uipment):<br>Sonic/Coring (Boart Longyear LS250)                      |                                                                                                          | Ground Level (m):<br>7.511 | Start Date: 26/10/2020 | Sheet:<br>2 of 2 |  |  |  |  |

| SAMP                          | LES & T                                          | ESTS           |       |                  |        |                                                         | STRATA                                                                                                                                                                                |                         |  |
|-------------------------------|--------------------------------------------------|----------------|-------|------------------|--------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Depth                         | Type<br>No                                       | Test<br>Result | Water | Reduced<br>Level | Legend | Depth<br>(Thickness)                                    | Description                                                                                                                                                                           | Instrument/<br>Backfill |  |
| 8.00<br>8.20                  | J8 <sub>(U6)</sub><br>B9 <sub>(U6)</sub>         |                |       |                  |        | -<br>-<br>-<br>-                                        | Soft red brown laminated CLAY. (continued)                                                                                                                                            |                         |  |
| 8.70-10.20<br>8.70<br>9.00    | U7 <sub>(SS)</sub><br>S<br>ES10 <sub>(U7)</sub>  | N11            |       |                  |        |                                                         |                                                                                                                                                                                       |                         |  |
| 10.20-11.70<br>10.20          | U8 <sub>(SS)</sub>                               | N8             |       |                  |        | (5.20)<br><br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                       |                         |  |
| 11.00<br>11.20                | J11 <sub>(U8)</sub><br>B12 <sub>(U8)</sub>       |                |       |                  |        |                                                         |                                                                                                                                                                                       |                         |  |
| 11.70-13.20<br>11.70          | U9 <sub>(SS)</sub><br>S                          | N15            |       | -4.99            |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>12.50           |                                                                                                                                                                                       |                         |  |
| 13.00                         | J13 <sub>(U9)</sub>                              |                |       |                  |        | -<br>-<br>(0.70)<br>-                                   | Firm brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone.                             |                         |  |
| 13.20-14.70<br>13.20<br>13.20 | U10 <sub>(SS)</sub><br>B14 <sub>(U10)</sub><br>S | 50/195mm       |       | -5.69            |        | 13.20                                                   | Red brown very clayey GRAVEL/very gravelly CLAY. Gravel is fine to medium angular and includes mudstone weathered. (Engineer notes weathering profile of an extremely weak mudstone). |                         |  |
| 14.00                         | J15 <sub>(U10)</sub>                             |                |       |                  | 0-0    | -<br>-<br>-<br>-                                        |                                                                                                                                                                                       |                         |  |
| 14.50                         | B16 <sub>(U10)</sub>                             |                |       | -7.19            |        | 14.70                                                   | Boring complete at 14.70m BGL - continued by rotary drilling.                                                                                                                         |                         |  |

| Borin      | g Progres | s and Wat | er Observa         | tions             | L                                                               | iner Sample                     | e Informatio             | n                        | General                                                                                                                                                                                                                                                                                                                                                             |  |  |
|------------|-----------|-----------|--------------------|-------------------|-----------------------------------------------------------------|---------------------------------|--------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Date       | Depth     | Casing    | Casing Dia<br>(mm) | Water<br>Standing | From - To Internal Dia Recovery Subsampled (%)                  |                                 |                          |                          | Remarks                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 26/10/2020 | 14.70     | 14.70     | 178                | 2.00              | 8.70 - 10.20<br>10.20 - 11.70<br>11.70 - 13.20<br>13.20 - 14.70 | 116<br>116<br>116<br>116<br>116 | 100<br>100<br>100<br>100 | Yes<br>Yes<br>Yes<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Triple installation: 2 No. 25mm diameter slotted standpipes installed between 1.00-6.00and 7.50-9.50m and 1 No. 50mm diameter slotted standpipe installed between 16.40-20.40m BGL respectively. (4) UXO testing during drilling. (5) Advanced using water flush. |  |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

| Ľ |  |
|---|--|

### **DRILLHOLE RECORD**

| Project: | Metal Processing Area Deep Soil an                  | Exploratory Hole No.                                                             |                            |                        |                  |  |  |
|----------|-----------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|------------------------|------------------|--|--|
| Client:  | South Tees Development Corporation                  | South Tees Development Corporation    Cocation: Former Redcar Steelworks, Redcar |                            |                        |                  |  |  |
| Method ( | (Equipment):<br>Sonic/Coring (Boart Longyear LS250) |                                                                                  | Ground Level (m):<br>7.511 | Start Date: 26/10/2020 | Sheet:<br>1 of 8 |  |  |

| RUN DETAILS STRATA |                   |                   |       |         |        |                                           |                                                                                                                                                                                                          | -                                                             | <u>f</u>                |
|--------------------|-------------------|-------------------|-------|---------|--------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| Depth              | TCR               | ax                | ē     | Reduced |        | Depth                                     | Descr                                                                                                                                                                                                    | iption                                                        | Instrument/<br>Backfill |
| (Core Ø)           | (SCR)<br>RQD      | Fracture<br>Index | Water | Level   | Legend | (Thickness)                               | Discontinuity Detail                                                                                                                                                                                     | Main                                                          | Inst                    |
| 14.70              | 100<br>(40)<br>30 | NI                |       | -7.19   |        | 14.70                                     | 14.70-15.60m non-intact.                                                                                                                                                                                 | Extremely weak red and green MUDSTONE partially to distinctly |                         |
| (92mm)             |                   | 7                 |       |         |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 15.60-16.20m subhorizontal (10-20 degrees) closey spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities.                                                   | weathered with gypsum veining.                                |                         |
| 16.20              | 100<br>(50)<br>33 | NI<br>10          |       |         |        | -<br>-<br>-                               | 16.20-16.30m non-intact.  16.30-16.50m subhorizontal (10-20 degrees) closey spaced planar and irregular rough undulating smooth                                                                          |                                                               |                         |
| (92mm)             |                   | NI                |       |         |        | -                                         | and rough tight infilled (clay) discontinuities.  16.50-16.95m non-intact.                                                                                                                               |                                                               |                         |
|                    |                   | 10                |       |         |        | -                                         | 16.95-17.35m subhorizontal (10-20 degrees) closey spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities.                                                   |                                                               |                         |
| 17.40              | 100<br>(87)<br>60 | NI<br>10          |       |         |        | -<br>(5.70)<br>-                          | 17.35-17.40m non-intact. 17.40-17.60m subhorizontal (10-20 degrees) closey spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities. 17.60-17.80m non-intact. |                                                               |                         |
| (92mm)             |                   | 9                 |       |         |        | -<br>-<br>-<br>-<br>-<br>-                | 17.80-19.95m subhorizontal (10-20 degrees) closey spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities.                                                   |                                                               |                         |

| Drilling Progress and Water Observations                                              |       |        | Standa            | ard Pene | tration Test                                 | Flush    |                             |                             | General |                            |                                                                                                            |
|---------------------------------------------------------------------------------------|-------|--------|-------------------|----------|----------------------------------------------|----------|-----------------------------|-----------------------------|---------|----------------------------|------------------------------------------------------------------------------------------------------------|
| Date                                                                                  | Depth | Casing | Water<br>Standing | Depth    | Depth Type Result From - To Type Returns (%) |          |                             |                             |         | Rer                        | marks                                                                                                      |
| 27/10/2020                                                                            | 14.70 | 14.70  |                   | 14.70    | S                                            | 50/105mm | 14.70 - 20.40               | Water                       | 100     | (2) Inspection pit dug pri | lo. 25mm diameter slotted<br>veen 1.00-6.00and<br>Imm diameter slotted<br>een 16.40-20.40m BGL<br>rilling. |
| All dimensions in metres  Scale 1:25.00  For explanation of sym abbreviations see Key |       |        |                   |          | Chec                                         | ked by:  | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |         |                            |                                                                                                            |

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

|   | 7 |
|---|---|
|   |   |
|   |   |
| _ |   |
|   |   |
|   |   |
|   |   |
| - | _ |
|   |   |
|   |   |

### **DRILLHOLE RECORD**

| Project:    | Metal Processing Area Deep Soil an               | Exploratory Hole No.                                                                               |                            |                           |                  |  |
|-------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------|---------------------------|------------------|--|
| Client:     | South Tees Development Corporation               | Tees Development Corporation  Location: Former Redcar Steelworks, Redcar E:454662.064 N:522591.697 |                            |                           |                  |  |
| Method (Equ | uipment):<br>Sonic/Coring (Boart Longyear LS250) |                                                                                                    | Ground Level (m):<br>7.511 | Start Date:<br>26/10/2020 | Sheet:<br>2 of 8 |  |

| RUN DETAILS STRATA     |                     |                   |       |                  |        |                      | Ι                                                                                                                                                                                |                                                                                                                                   |                         |  |  |  |
|------------------------|---------------------|-------------------|-------|------------------|--------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|
| <del></del>            |                     |                   |       |                  |        |                      | Description                                                                                                                                                                      |                                                                                                                                   |                         |  |  |  |
| Depth<br>&<br>(Core Ø) | TCR<br>(SCR)<br>RQD | Fracture<br>Index | Water | Reduced<br>Level | Legend | Depth<br>(Thickness) |                                                                                                                                                                                  | ·                                                                                                                                 | Instrument/<br>Backfill |  |  |  |
| (Core Ø)               | RQD                 | F                 | >     | LOVOI            |        | (111101011000)       | Discontinuity Detail                                                                                                                                                             | Main                                                                                                                              | 1                       |  |  |  |
| 18.90 (muZ6)           | 100<br>(87)<br>47   | NI 12             |       | -12.89           |        | 20.40                | 19.95-20.15m non-intact.  20.15-20.40m subhorizontal (10-20 degrees) closey spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities. | Extremely weak red and green MUDSTONE partially to distinctly weathered with gypsum veining. (continued)  Complete at 20.40m BGL. |                         |  |  |  |

| Drilling Progress and Water Observations |                          |        | Stand             | ard Pene                                        | tration Test | Flush    |                            |  | General                     |                            |                                                                                                            |
|------------------------------------------|--------------------------|--------|-------------------|-------------------------------------------------|--------------|----------|----------------------------|--|-----------------------------|----------------------------|------------------------------------------------------------------------------------------------------------|
| Date                                     | Depth                    | Casing | Water<br>Standing | Depth                                           | Туре         | Result   | From - To Type Returns (%) |  |                             | Rer                        | marks                                                                                                      |
| 27/10/2020                               | 20.40                    | 14.70  | 2.00              | 20.40                                           | S            | 50/100mm |                            |  |                             | (2) Inspection pit dug pri | Io. 25mm diameter slotted<br>ween 1.00-6.00and<br>Imm diameter slotted<br>een 16.40-20.40m BGL<br>rilling. |
|                                          | nensions i<br>Scale 1:25 |        |                   | For explanation of sym<br>abbreviations see Key |              |          |                            |  | Logged by:<br>D. Portsmouth | Contract No.<br>4291       |                                                                                                            |

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

|            | Į.                                             |                      |                            |                        |               |  |  |  |
|------------|------------------------------------------------|----------------------|----------------------------|------------------------|---------------|--|--|--|
| Project:   | Metal Processing Area Deep Soil an             | Exploratory Hole No. |                            |                        |               |  |  |  |
| Client:    | South Tees Development Corporation             | MPA_AUK_BH106        |                            |                        |               |  |  |  |
| Method (Ed | quipment): Sonic/Coring (Boart Longyear LS250) |                      | Ground Level (m):<br>7.511 | Start Date: 26/10/2020 | Sheet: 3 of 8 |  |  |  |



### Figure MPA\_AUK\_BH106.2 MPA\_AUK\_BH106 1.20-2.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an               | Exploratory Hole No. |                            |                        |                  |
|------------|--------------------------------------------------|----------------------|----------------------------|------------------------|------------------|
| Client:    | South Tees Development Corporation               | MPA_AUK_BH106        |                            |                        |                  |
| Method (Eq | uipment):<br>Sonic/Coring (Boart Longyear LS250) |                      | Ground Level (m):<br>7.511 | Start Date: 26/10/2020 | Sheet:<br>4 of 8 |

### Figure MPA\_AUK\_BH106.3 MPA\_AUK\_BH106 2.70-4.20m BGL



### Figure MPA\_AUK\_BH106.4 MPA\_AUK\_BH106 4.20-5.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

### **DRILLHOLE RECORD**

PRELIM2

| Project | :<br>Metal Processing Area Deep Soil an               | Exploratory Hole No.                                                                                     |  |  |  |  |  |  |
|---------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Client: | South Tees Development Corporation                    | South Tees Development Corporation  Location: Former Redcar Steelworks, Redcar E:454662.064 N:522591.697 |  |  |  |  |  |  |
| Method  | I (Equipment):<br>Sonic/Coring (Boart Longyear LS250) | Ground Level (m): Start Da 26/10.                                                                        |  |  |  |  |  |  |

### Figure MPA\_AUK\_BH106.5 MPA\_AUK\_BH106 5.70-7.20m BGL Gusterbeits Ltd. PHOTOGRAS METALS PROCESSING AREA 4291 CEED MPA\_AUK\_BHIOG



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909

### **DRILLHOLE RECORD**

PRELIM2

Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH106 South Tees Development Corporation E:454662.064 N:522591.697 Start Date: 26/10/2020 Method (Equipment): Sonic/Coring (Boart Longyear LS250) 6 of 8

> Figure MPA\_AUK\_BH106.7 MPA\_AUK\_BH106 8.70-10.20m BGL



Figure MPA\_AUK\_BH106.8 MPA\_AUK\_BH106 10.20-11.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

### **DRILLHOLE RECORD**

PRELIM2

| Project:  | Metal Processing Area Deep Soil an                 | Exploratory Hole No.                                                                                     |                            |                        |               |  |  |  |
|-----------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|------------------------|---------------|--|--|--|
| Client:   | South Tees Development Corporation                 | South Tees Development Corporation  Location: Former Redcar Steelworks, Redcar E:454662.064 N:522591.697 |                            |                        |               |  |  |  |
| Method (E | Equipment):<br>Sonic/Coring (Boart Longyear LS250) |                                                                                                          | Ground Level (m):<br>7.511 | Start Date: 26/10/2020 | Sheet: 7 of 8 |  |  |  |

## Figure MPA\_AUK\_BH106.9 MPA\_AUK\_BH106 11.70-13.20m BGL Exploration & PHOTOGRAPHIC BOARD METALS PROCESSING AREA 4291 MPA\_AUK\_BHIOG 13.20



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG
Regional Office: Unit 25 Unit 25 Stella Gill State, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG
Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL
Tel: 01972 735 300 Fax: 01772 735 999

### **DRILLHOLE RECORD**

PRELIM2

Project: Metal Processing Area Deep Soil and Groundwater Investigation **Exploratory Hole No.** Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH106 South Tees Development Corporation E:454662.064 N:522591.697 Start Date: 26/10/2020 Method (Equipment): Sonic/Coring (Boart Longyear LS250) 8 of 8



Figure MPA\_AUK\_BH106.12 MPA\_AUK\_BH106 17.40-20.40m BGL Exploration & Control of the Property PHOTOGRAPHIC BOARD METALS PROCESSING AREA CONTRACT NO: 4291 HOLE ID: MPA\_AUK\_BHIOG (ROT) Bx2 DEPTH FROM: 17-40 10 20.40

### SONIC SAMPLE HOLE RECORD

| Project: | Metal Processing Area Deep Soil an                  | Exploratory Hole No.                                                                                     |                            |                        |                  |  |
|----------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------|--|
| Client:  | South Tees Development Corporation                  | South Tees Development Corporation  Location: Former Redcar Steelworks, Redcar E:454577,760 N:522737,339 |                            |                        |                  |  |
| Method   | (Equipment):<br>Sonic/Coring (Boart Longyear LS250) |                                                                                                          | Ground Level (m):<br>6.800 | Start Date: 22/10/2020 | Sheet:<br>1 of 2 |  |

| SAMPLES & TESTS   |                            | ESTS           |       | STRATA           |        |                       |                                                                                                                                                                                                                                                       |                         |  |
|-------------------|----------------------------|----------------|-------|------------------|--------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Depth             | Type<br>No                 | Test<br>Result | Water | Reduced<br>Level | Legend | Depth<br>(Thickness)  | Description                                                                                                                                                                                                                                           | Instrument/<br>Backfill |  |
| 0.00-1.20         | U1 <sub>(SS)</sub>         |                |       |                  |        | -<br>-<br>-<br>-<br>- | MADE GROUND (Brown and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and includes slag. Slag content is 75-100%. Slag is vesicular). |                         |  |
| 0.60              | J1 <sub>(U1)</sub>         |                |       |                  | XXX    | }                     | and molados stage stage something to 100 /or stage to 100 /or                                                                                                                                                                                         |                         |  |
| 0.80              | B2 <sub>(U1)</sub>         |                |       |                  | $\ggg$ | [                     |                                                                                                                                                                                                                                                       |                         |  |
| 1.00              | PID                        | <0.1ppm        |       |                  | XXX    | £                     |                                                                                                                                                                                                                                                       |                         |  |
| 1.20-2.70<br>1.20 | U2<br>S                    | 50/35mm        |       |                  |        |                       | at c.1.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                         |                         |  |
| 2.00              | PID                        | <0.1ppm        |       |                  |        | <del>-</del>          |                                                                                                                                                                                                                                                       |                         |  |
| 2.70-4.20<br>2.70 | U3 <sub>(SS)</sub><br>S    | 50/85mm        |       |                  |        |                       | at c.2.70m BGL very dense/cobble obstruction.                                                                                                                                                                                                         |                         |  |
| 3.00              | PID                        | <0.1ppm        |       |                  |        | (6.60)                |                                                                                                                                                                                                                                                       |                         |  |
| 3.60              | J3 <sub>(U3)</sub>         |                |       |                  | XXX    | £                     |                                                                                                                                                                                                                                                       |                         |  |
| 3.80              | B4 <sub>(U3)</sub>         |                |       |                  | XXX    | E                     |                                                                                                                                                                                                                                                       | -                       |  |
| 4.00              | PID                        | <0.1ppm        |       |                  | XXX    | -                     |                                                                                                                                                                                                                                                       |                         |  |
| 4.20-5.70<br>4.20 | U4<br>S                    | 50/25mm        |       |                  |        |                       | at c.4.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                         |                         |  |
| 5.00              | PID                        | <0.1ppm        |       |                  |        |                       |                                                                                                                                                                                                                                                       |                         |  |
| 5.70-7.20         | U5 <sub>(SS)</sub>         |                |       |                  |        |                       |                                                                                                                                                                                                                                                       |                         |  |
| 6.00<br>6.00      | ES5 <sub>(U5)</sub><br>PID | <0.1ppm        |       |                  |        |                       |                                                                                                                                                                                                                                                       |                         |  |
| 6.70              | J6 <sub>(U5)</sub>         |                |       | 0.20             | <br>   | 6.60                  | Very loose and loose grey brown very silty SAND with lenses of silt and soft brown clay. Sand is fine to coarse.                                                                                                                                      |                         |  |
| 6.90<br>7.00      | B7 <sub>(U5)</sub><br>PID  | <0.1ppm        |       |                  |        | <u> </u>              | •                                                                                                                                                                                                                                                     |                         |  |
| 7.20-8.70<br>7.20 | U6 <sub>(SS)</sub>         | N4             |       |                  |        | .(1.80)               |                                                                                                                                                                                                                                                       |                         |  |
|                   |                            |                |       |                  |        | -<br>-<br>-<br>-      |                                                                                                                                                                                                                                                       |                         |  |

|                                        |       |        |                    |                   |                          |                      |                 |            | <u> `.`H</u> i [                                                                               |  |
|----------------------------------------|-------|--------|--------------------|-------------------|--------------------------|----------------------|-----------------|------------|------------------------------------------------------------------------------------------------|--|
| Boring Progress and Water Observations |       |        |                    |                   | Liner Sample Information |                      |                 |            | General                                                                                        |  |
| Date                                   | Depth | Casing | Casing Dia<br>(mm) | Water<br>Standing | From - To                | Internal Dia<br>(mm) | Recovery<br>(%) | Subsampled | Remarks                                                                                        |  |
| 22/10/2020                             | 0.00  | 0.00   | 178                |                   | 0.00 - 1.20              | 116                  | 100             | Yes        | (1) Description derived from drillers daily report.                                            |  |
|                                        |       |        |                    |                   | 1.20 - 2.70              | 116                  | 100             | No         | (2) Inspection pit dug prior to drilling.                                                      |  |
|                                        |       |        |                    |                   | 2.70 - 4.20              | 116                  | 100             | Yes        | (3) Triple installation: 2 No. 25mm diameter slotted standpipe installed between 1.00-6.00 and |  |
|                                        |       |        |                    |                   | 4.20 - 5.70              | 116                  | 27              | No         | 7.00-8.00m and 1 No. 50mm diameter slotted                                                     |  |
|                                        |       |        |                    |                   | 5.70 - 7.20              | 116                  | 100             | Yes        | standpipe installed between 15.20-19.20m BGL                                                   |  |
|                                        |       |        |                    |                   | 7.20 - 8.70              | 116                  | 100             | Yes        | respectively. (4) UXO testing undertaken during drilling. (5) Advanced using water flush.      |  |
|                                        |       |        |                    |                   |                          |                      |                 |            |                                                                                                |  |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

|    | ~ |
|----|---|
|    |   |
|    |   |
|    |   |
|    |   |
|    |   |
| Τ. | _ |
|    |   |
| -  |   |

### SONIC SAMPLE HOLE RECORD

| Project:   | Metal Processing Area Deep Soil and              | d Groundwat | er Investigation                                      |                        | Exploratory Hole No. |
|------------|--------------------------------------------------|-------------|-------------------------------------------------------|------------------------|----------------------|
| Client:    | South Tees Development Corporation               |             | mer Redcar Steelworks, Re<br>E:454577.760 N:522737.33 |                        | MPA_AUK_BH107        |
| Method (Eq | uipment):<br>Sonic/Coring (Boart Longyear LS250) |             | Ground Level (m):<br>6.800                            | Start Date: 22/10/2020 | Sheet:<br>2 of 2     |

| SAMP                                   | LES & TE                                                              | ESTS           |       |                  |        |                      | STRATA                                                                                                                                                                                       | ent/                          |
|----------------------------------------|-----------------------------------------------------------------------|----------------|-------|------------------|--------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Depth                                  | Type<br>No                                                            | Test<br>Result | Water | Reduced<br>Level | Legend | Depth<br>(Thickness) | Description                                                                                                                                                                                  | <br> Instrument/<br> Backfill |
| 8.00                                   | ES8 <sub>(U6)</sub>                                                   |                |       | -1.60            |        | 8.40                 | Very loose and loose grey brown very silty SAND with lenses of silt and soft brown clay. Sand is fine to coarse. <i>(continued)</i>                                                          |                               |
| 8.70-10.20<br>8.70<br>9.00<br>9.20     | U7 <sub>(SS)</sub><br>S<br>J9 <sub>(U7)</sub><br>B10 <sub>(U7)</sub>  | N11            |       |                  |        | [2.30)               | Soft laminated brown CLAY.                                                                                                                                                                   |                               |
| 10.20-11.70<br>10.20                   | U8 <sub>(SS)</sub>                                                    | N9             |       | -3.90            |        | 10.70                |                                                                                                                                                                                              |                               |
| 11.00<br>11.20                         | J11 <sub>(U8)</sub><br>B12 <sub>(U8)</sub>                            |                |       | 4.00             |        | (1.00)               | Firm to stiff brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone.                           |                               |
| 11.70-13.20<br>11.70<br>12.00<br>12.20 | U9 <sub>(SS)</sub><br>S<br>J13 <sub>(U9)</sub><br>B14 <sub>(U9)</sub> | N42            |       | -4.90<br>-6.40   |        | (1.50)               | Red brown orange very clayey GRAVEL/very gravelly CLAY. Gravel is fine to medium angular and includes mudstone weathered. (Engineer notes weathering profile of an extremely weak mudstone). |                               |
|                                        |                                                                       |                |       | -0.40            |        |                      | Boring complete at 13.20m BGL - continued by rotary drilling.                                                                                                                                |                               |

| Borin                                  | g Progres               | s and Wat               | er Observa               | ations               | L                                              | iner Sample          | e Informatio      | General           |                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|-------------------------|-------------------------|--------------------------|----------------------|------------------------------------------------|----------------------|-------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                   | Depth                   | Casing                  | Casing Dia<br>(mm)       | Water<br>Standing    | From - To                                      | Internal Dia<br>(mm) | Recovery<br>(%)   | Subsampled        | Remarks                                                                                                                                                                                                                                                                                            |
| 22/10/2020<br>23/10/2020<br>23/10/2020 | 10.20<br>10.20<br>13.20 | 10.20<br>10.20<br>13.20 | 178<br>178<br>178<br>178 | 2.30<br>5.60<br>5.60 | 8.70 - 10.20<br>10.20 - 11.70<br>11.70 - 13.20 | 116<br>116           | 100<br>100<br>100 | Yes<br>Yes<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Triple installation: 2 No. 25mm diameter slotted standpipe installed between 1.00-6.00 and 7.00-8.00m and 1 No. 50mm diameter slotted standpipe installed between 15.20-19.20m BGL respectively. |
|                                        |                         |                         |                          |                      |                                                |                      |                   |                   | (4) UXO testing undertaken during drilling.<br>(5) Advanced using water flush.                                                                                                                                                                                                                     |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br>4291 |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|----------------------|
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|----------------------|

|   | <b>=</b> |
|---|----------|
|   | 2        |
| U | 7        |

### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an               | d Groundwat | er Investigation                                      |                        | Exploratory Hole No. |
|------------|--------------------------------------------------|-------------|-------------------------------------------------------|------------------------|----------------------|
| Client:    | South Tees Development Corporation               |             | mer Redcar Steelworks, Re<br>E:454577.760 N:522737.33 |                        | MPA_AUK_BH107        |
| Method (Eq | uipment):<br>Sonic/Coring (Boart Longyear LS250) |             | Ground Level (m):<br>6.800                            | Start Date: 22/10/2020 | Sheet:<br>1 of 8     |

|            |              |          | I     |         |        |             |                                                                                                           |                                        |                 |                         |
|------------|--------------|----------|-------|---------|--------|-------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|-------------------------|
| RUN        | DETA         |          |       |         | 1      |             | STRATA                                                                                                    |                                        |                 | Instrument/<br>Backfill |
| Depth<br>& | TCR<br>(SCR) | Fracture | Water | Reduced | Legend | Depth       | Desc                                                                                                      | ription                                |                 | strum                   |
| (Core Ø)   | (SCR)<br>RQD | F. a     | Š     | Level   | Logona | (Thickness) | Discontinuity Detail                                                                                      | Mair                                   | 1               | I I                     |
| 13.20      | 100          | NI       |       | -6.40   |        | 13.20       | 13.20-13.60m non-intact.                                                                                  | Extremely weak red                     | and green       |                         |
|            | (73)<br>50   |          |       |         |        |             |                                                                                                           | MUDSTÓNE partially weathered with gyps | y to distinctly |                         |
|            |              |          |       |         |        | _           |                                                                                                           | Wednered with gyps                     | um voming.      |                         |
|            |              |          |       |         |        |             |                                                                                                           |                                        |                 |                         |
|            |              | 6        |       |         |        | _           | 13.60-14.70m subhorizontal (10-20 degrees) closely spaced planar and irregular rough undulating smooth    |                                        |                 |                         |
|            |              |          |       |         |        | _           | and rough tight infilled (clay) discontinuities.                                                          |                                        |                 |                         |
| (E         |              |          |       |         |        | -           |                                                                                                           |                                        |                 |                         |
| (92mm)     |              |          |       |         |        | _           |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        | _           |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        | _           |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        | -           |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        | -           |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        | -           |                                                                                                           |                                        |                 |                         |
| 14.70      |              |          |       |         |        | -           |                                                                                                           |                                        |                 |                         |
|            | 100          | NI       |       |         |        |             | 14.70-15.00m non-intact.                                                                                  |                                        |                 |                         |
|            | (80)<br>23   |          |       |         |        |             |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        | L           |                                                                                                           |                                        |                 |                         |
|            |              | 7        |       |         |        | _           | 15.00-16.20m subhorizontal (10-20 degrees) closely<br>spaced planar and irregular rough undulating smooth |                                        |                 |                         |
|            |              |          |       |         |        | -           | and rough tight infilled (clay) discontinuities.                                                          |                                        |                 | <b> </b>                |
|            |              |          |       |         |        | -           |                                                                                                           |                                        |                 | 000                     |
| (92mm)     |              |          |       |         |        |             |                                                                                                           |                                        |                 | 00                      |
| (921       |              |          |       |         |        | _           |                                                                                                           |                                        |                 | 00                      |
|            |              |          |       |         |        | -           |                                                                                                           |                                        |                 | 000                     |
|            |              |          |       |         |        | -           |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        | _           |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        |             |                                                                                                           |                                        |                 | °0°=                    |
|            |              |          |       |         |        |             |                                                                                                           |                                        |                 |                         |
| 16.20      |              |          |       |         |        | (6.00)      |                                                                                                           |                                        |                 |                         |
|            | 100<br>(70)  | NI       |       |         |        |             | 16.20-16.65m non-intact.                                                                                  |                                        |                 |                         |
|            | 53           |          |       |         |        | -           |                                                                                                           |                                        |                 | 00 1                    |
|            |              |          |       |         |        | -           |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        | _           |                                                                                                           |                                        |                 |                         |
|            |              | 6        |       |         |        | _           | 16.65-17.70m subhorizontal (10-20 degrees) closely spaced planar and irregular rough undulating smooth    |                                        |                 |                         |
|            |              |          |       |         |        | -           | and rough tight infilled (clay) discontinuities.                                                          |                                        |                 | 000                     |
| (92mm)     |              |          |       |         |        | -           |                                                                                                           |                                        |                 |                         |
| (6)        |              |          |       |         |        | _           |                                                                                                           |                                        |                 |                         |
|            |              |          |       |         |        |             |                                                                                                           |                                        |                 |                         |

| Drilling   | g Progress and                            | l Water Observ | vations        | Stand | Standard Penetration Test |             |                         | Flush |                | General                                                                                                                                                                                                                                             |                                                                                                                             |  |  |
|------------|-------------------------------------------|----------------|----------------|-------|---------------------------|-------------|-------------------------|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Date       | Depth                                     | Casing         | Wate<br>Standi |       | Туре                      | Result      | From - To               | Туре  | Returns<br>(%) | Remarks                                                                                                                                                                                                                                             |                                                                                                                             |  |  |
| 23/10/2020 | 13.20                                     | 13.20          | 5.60           | 13.20 | S                         | 50/45mm     | 13.20 - 19.20 Water 100 |       |                | (1) Description derived fi<br>(2) Inspection pit dug pri<br>(3) Triple installation: 2 h<br>standpipe installed betw<br>7.00-8.00m and 1 No. 50<br>standpipe installed betw<br>respectively.<br>(4) UXO testing undertal<br>(5) Advanced using wate | or to drilling.  Io. 25mm diameter slotted een 1.00-6.00 and Omm diameter slotted een 15.20-19.20m BGL ken during drilling. |  |  |
|            | All dimensions in metres<br>Scale 1:25.00 |                |                |       |                           | tion of syn | nbols and<br>y Sheets   |       |                | Logged by:<br>D. Portsmouth                                                                                                                                                                                                                         | Contract No.<br>4291                                                                                                        |  |  |

Print Date and Time: 07/12/2020 13:32:25

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

| ~ |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

### **DRILLHOLE RECORD**

| Project:   | Metal Processing Area Deep Soil an                | d Groundwat | er Investigation                                      |                        | Exploratory Hole No. |
|------------|---------------------------------------------------|-------------|-------------------------------------------------------|------------------------|----------------------|
| Client:    | South Tees Development Corporation                |             | mer Redcar Steelworks, Re<br>E:454577.760 N:522737.33 |                        | MPA_AUK_BH107        |
| Method (Ed | quipment):<br>Sonic/Coring (Boart Longyear LS250) |             | Ground Level (m):<br>6.800                            | Start Date: 22/10/2020 | Sheet: 2 of 8        |

| RUN        | DETA                | AILS              |       |         |        |                                                                                             | STRATA                                                                                               |                                                                                |                 | ent/                    |
|------------|---------------------|-------------------|-------|---------|--------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|-------------------------|
| Depth<br>& | TCR<br>(SCR)<br>RQD | Fracture<br>Index | Water | Reduced | Legend | Depth                                                                                       | Desc                                                                                                 | ription                                                                        |                 | Instrument/<br>Backfill |
| (Core Ø)   | RQD                 | Frac              | Wa    | Level   | Legend | (Thickness)                                                                                 | Discontinuity Detail                                                                                 | Mair                                                                           | า               | Ins                     |
| 17.70      | 100<br>(87)<br>40   | NI<br>6           |       |         |        | -                                                                                           | 17.70-17.90m non-intact. 17.90-19.20m subhorizontal (10-20 degrees) closely                          | Extremely weak red<br>MUDSTONE partially<br>weathered with gyps<br>(continued) | v to distinctly |                         |
| (mm26)     |                     |                   |       | -12.40  |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities. |                                                                                |                 |                         |
|            |                     |                   |       |         |        |                                                                                             |                                                                                                      | Complete at 19.20m                                                             | BGL.            |                         |

| Drilling                                  | g Progress and | l Water Obser | vations           | Standa | ard Pene                 | tration Test |           | Flush                       |                                                                                                                                                                                                                                                                                                                                                                                | General |  |  |
|-------------------------------------------|----------------|---------------|-------------------|--------|--------------------------|--------------|-----------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| Date                                      | Depth          | Casing        | Water<br>Standing | Depth  | Туре                     | Result       | From - To | Туре                        | Returns<br>(%)                                                                                                                                                                                                                                                                                                                                                                 | Remarks |  |  |
| 23/10/2020                                | 19.20          | 13.20         |                   | 19.20  | S                        | 50/20mm      |           |                             | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Triple installation: 2 No. 25mm diameter slotted standpipe installed between 1.00-6.00 and 7.00-8.00m and 1 No. 50mm diameter slotted standpipe installed between 15.20-19.20m BGL respectively. (4) UXO testing undertaken during drilling. (5) Advanced using water flush. |         |  |  |
| All dimensions in metres<br>Scale 1:25.00 |                |               |                   |        | tion of syn<br>ns see Ke |              |           | Logged by:<br>D. Portsmouth | Contract No.<br>4291                                                                                                                                                                                                                                                                                                                                                           |         |  |  |

Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG
Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL

Tel: 0191 387 4700 Fax: 0191 387 4710
Tel: 01772 735 300 Fax: 01772 735 999

### **DRILLHOLE RECORD** PRELIM2 Exploratory Hole No.

Metal Processing Area Deep Soil and Groundwater Investigation Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH107 South Tees Development Corporation E:454577.760 N:522737.339 Start Date: 22/10/2020 Ground Level (m): 6.800 Method (Equipment): Sonic/Coring (Boart Longyear LS250) 3 of 8



Figure MPA\_AUK\_BH107.2 MPA\_AUK\_BH107 1.20-2.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909



#### **DRILLHOLE RECORD**

| Project:   | Metal Processing Area Deep Soil and               |               | Exploratory Hole No.       |                        |               |
|------------|---------------------------------------------------|---------------|----------------------------|------------------------|---------------|
| Client:    | South Tees Development Corporation                | MPA_AUK_BH107 |                            |                        |               |
| Method (Ed | quipment):<br>Sonic/Coring (Boart Longyear LS250) |               | Ground Level (m):<br>6.800 | Start Date: 22/10/2020 | Sheet: 4 of 8 |





Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an  |               | Exploratory Hole No. |             |        |
|------------|-------------------------------------|---------------|----------------------|-------------|--------|
| Client:    | South Tees Development Corporation  | MPA_AUK_BH107 |                      |             |        |
| Method (Eq | uipment):                           |               | Ground Level (m):    | Start Date: | Sheet: |
|            | Sonic/Coring (Boart Longyear LS250) | 6.800         | 22/10/2020           | 5 of 8      |        |

### Figure MPA\_AUK\_BH107.5 MPA\_AUK\_BH107 5.70-7.20m BGL



### Figure MPA\_AUK\_BH107.6 MPA\_AUK\_BH107 7.20-8.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909

### **DRILLHOLE RECORD**

PRELIM2

Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH107 South Tees Development Corporation E:454577.760 N:522737.339 Start Date: 22/10/2020 Ground Level (m): 6.800 Method (Equipment): Sonic/Coring (Boart Longyear LS250) 6 of 8





Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909



#### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Project:  Metal Processing Area Deep Soil and Groundwater Investigation |               |                   |             |        |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------|---------------|-------------------|-------------|--------|--|--|--|--|--|--|
| Client:    | South Tees Development Corporation                                      | MPA_AUK_BH107 |                   |             |        |  |  |  |  |  |  |
| Method (Ed |                                                                         |               | Ground Level (m): | Start Date: | Sheet: |  |  |  |  |  |  |
|            | Sonic/Coring (Boart Longyear LS250)                                     | 6.800         | 22/10/2020        | 7 of 8      |        |  |  |  |  |  |  |

### Figure MPA\_AUK\_BH107.9 MPA\_AUK\_BH107 11.70-13.20m BGL



Figure MPA\_AUK\_BH107.10 MPA\_AUK\_BH107 13.20-16.20m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

#### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil and                |               | Exploratory Hole No.       |                        |                  |
|------------|----------------------------------------------------|---------------|----------------------------|------------------------|------------------|
| Client:    | South Tees Development Corporation                 | MPA_AUK_BH107 |                            |                        |                  |
| Method (Ed | equipment):<br>Sonic/Coring (Boart Longyear LS250) |               | Ground Level (m):<br>6.800 | Start Date: 22/10/2020 | Sheet:<br>8 of 8 |

# Figure MPA\_AUK\_BH107.11 MPA\_AUK\_BH107 16.20-19.20m BGL Allied Exploration & Section PHOTOGRAPHIC BOARD METALS PROCESSING AREA CONTRACT NO. 4291 HOLE ID: MPA\_AUK\_BHIO7 (ROT) 8x2 DEPTH FROM: 16-20 10 (9-20

## ALLIED EXPLORATION & GEOTECHNICS LIMITED Head Office: Regional Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

### SONIC SAMPLE HOLE RECORD

| Project: | Metal Processing Area Deep Soil an              | Exploratory Hole No.       |                        |                  |
|----------|-------------------------------------------------|----------------------------|------------------------|------------------|
| Client:  | South Tees Development Corporation              | MPA_AUK_BH108              |                        |                  |
| Method ( | Equipment): Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>6.324 | Start Date: 21/10/2020 | Sheet:<br>1 of 2 |

| SAMPLES & TESTS STRATA            |                                                                       |                     |       |                  | nt/                                               | =                                                                                            |                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|-----------------------------------------------------------------------|---------------------|-------|------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth                             | Type<br>No                                                            | Test<br>Result      | Water | Reduced<br>Level | Legend                                            | Depth<br>(Thickness)                                                                         | Description                                                                                                                                                                                                                                                | Instrume                                | Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00-1.20<br>0.60<br>0.80         | J1 <sub>(U1)</sub>                                                    |                     |       |                  |                                                   |                                                                                              | MADE GROUND (Brown green and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and include slag. Slag content is 75-100%. Slag is vesicular). | 888888888888888888888888888888888888888 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.00                              | B2 <sub>(U1)</sub><br>PID                                             | <0.1ppm             |       |                  |                                                   | -                                                                                            |                                                                                                                                                                                                                                                            | 1 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.20-2.70<br>1.20                 | U2<br>S                                                               | 50/85mm             |       |                  |                                                   |                                                                                              | at c.1.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.00                              | PID                                                                   | <0.1ppm             |       |                  |                                                   | <del>,</del>                                                                                 |                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.70-4.20<br>2.70<br>3.00         | U3 <sub>(SS)</sub><br>S<br>PID                                        | 50/120mm<br><0.1ppm |       |                  |                                                   | (-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | at c.2.70m BGL very dense/cobble obstruction.                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.60<br>3.80                      | J3 <sub>(U3)</sub><br>B4 <sub>(U3)</sub>                              |                     |       |                  |                                                   | \$<br>\$<br>\$<br>\$<br>\$                                                                   |                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.00                              | PID                                                                   | <0.1ppm             |       |                  |                                                   | -                                                                                            |                                                                                                                                                                                                                                                            | ΙĦ                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.20-5.70<br>4.20                 | U4 <sub>(SS)</sub><br>S                                               | 50/175mm            |       |                  |                                                   |                                                                                              | at c.4.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.00                              | PID                                                                   | <0.1ppm             |       |                  |                                                   |                                                                                              |                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.50<br>5.70-7.20<br>5.70         | ES5 <sub>(U4)</sub> U5 <sub>(SS)</sub> S                              | N39                 |       | 0.32             | <del>, , , , , , , , , , , , , , , , , , , </del> | 6.00                                                                                         | at c.5.70m BGL dense.                                                                                                                                                                                                                                      |                                         | SECTION SECTIO |
| 6.00                              | PID                                                                   | <0.1ppm             |       |                  | ×                                                 | -<br>-<br>-                                                                                  | Medium dense grey brown silty SAND with lenses of silt and fragments of shell. Sand is fine to coarse.                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.60<br>6.80<br>7.00<br>7.20-8.70 | J6 <sub>(U5)</sub><br>B7 <sub>(U5)</sub><br>PID<br>U6 <sub>(SS)</sub> | <0.1ppm             |       |                  | ×                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-  |                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.20                              | U6 <sub>(SS)</sub><br>S                                               | N20                 |       |                  | × · · · · · · · · · · · · · · · · · · ·           | . (2.70)<br>-<br>-<br>-<br>-<br>-                                                            |                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|            |            |            |                    | . · v             |             |                      |                 |            |                                                                                                 |
|------------|------------|------------|--------------------|-------------------|-------------|----------------------|-----------------|------------|-------------------------------------------------------------------------------------------------|
| Boring     | g Progress | s and Wate | er Observa         | ations            | L           | iner Sample          | e Informatio    | n          | General                                                                                         |
| Date       | Depth      | Casing     | Casing Dia<br>(mm) | Water<br>Standing | From - To   | Internal Dia<br>(mm) | Recovery<br>(%) | Subsampled | Remarks                                                                                         |
| 21/10/2020 | 0.00       | 0.00       | 178                |                   | 0.00 - 1.20 | 116                  | 100             | Yes        | (1) Description derived from drillers daily report.                                             |
|            |            |            |                    |                   | 1.20 - 2.70 | 116                  | 100             | No         | (2) Inspection pit dug prior to drilling.                                                       |
|            |            |            |                    |                   | 2.70 - 4.20 | 116                  | 100             | Yes        | (3) Triple installation: 2 No. 25mm diameter slotted standpipes installed between 1.00-5.00 and |
|            |            |            |                    |                   | 4.20 - 5.70 | 116                  | 100             | Yes        | 6.00-8.00m and 1 No. 50mm diameter slotted                                                      |
|            |            |            |                    |                   | 5.70 - 7.20 | 116                  | 100             | Yes        |                                                                                                 |
|            |            |            |                    |                   | 7.20 - 8.70 | 116                  | 100             | Yes        | respectively.                                                                                   |
|            |            |            |                    |                   |             |                      |                 |            |                                                                                                 |
|            |            |            |                    |                   |             |                      |                 |            |                                                                                                 |
|            |            |            |                    |                   |             |                      |                 |            |                                                                                                 |
|            |            |            |                    |                   | 5.70 - 7.20 | 116                  | 100             | Yes        | standpipe installed between 13.70-17.70m BGL respectively.                                      |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br>4291 |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|----------------------|

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

|   | ~ |
|---|---|
|   |   |
|   |   |
|   | _ |
|   |   |
|   |   |
|   |   |
| - |   |
|   |   |

### SONIC SAMPLE HOLE RECORD

| Project:   | Metal Processing Area Deep Soil an               | Exploratory Hole No. |                            |                           |               |
|------------|--------------------------------------------------|----------------------|----------------------------|---------------------------|---------------|
| Client:    | South Tees Development Corporation               | MPA_AUK_BH108        |                            |                           |               |
| Method (Eq | uipment):<br>Sonic/Coring (Boart Longyear LS250) |                      | Ground Level (m):<br>6.324 | Start Date:<br>21/10/2020 | Sheet: 2 of 2 |

| SAMP                                   | LES & TE                                                              | ESTS           |       |                  |                                         |                                                                                             | STRATA                                                                                                                                                                                                                                  | ent/                    |
|----------------------------------------|-----------------------------------------------------------------------|----------------|-------|------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Depth                                  | Type<br>No                                                            | Test<br>Result | Water | Reduced<br>Level | Legend                                  | Depth<br>(Thickness)                                                                        | Description                                                                                                                                                                                                                             | Instrument/<br>Backfill |
| 8.00                                   | ES8 <sub>(U6)</sub>                                                   |                |       | -2.38            | × · · · · · · · · · · · · · · · · · · · | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Medium dense grey brown silty SAND with lenses of silt and fragments of shell. Sand is fine to coarse. (continued)                                                                                                                      |                         |
| 8.70-10.20<br>8.70                     | U7 <sub>(SS)</sub>                                                    | N19            |       | -2.30            | ×                                       | -<br>-<br>-<br>-<br>-<br>-                                                                  | Firm brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone. (Engineer notes evidence of structure/laminae within the fabric of the clay). |                         |
| 9.60<br>9.80                           | J9 <sub>(U7)</sub><br>B10 <sub>(U7)</sub>                             |                |       |                  |                                         | -[(1.75)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                  |                                                                                                                                                                                                                                         |                         |
| 10.20-11.70<br>10.20<br>10.60<br>10.80 | U8 <sub>(SS)</sub><br>S<br>J11 <sub>(U8)</sub><br>B12 <sub>(U8)</sub> | N23            |       | -4.13<br>-5.38   |                                         | (1.25)                                                                                      | Red brown very clayey GRAVEL/very gravelly CLAY. Gravel is fine to medium angular and includes mudstone weathered. (Engineer notes weathering profile of an extremely weak mudstone).                                                   |                         |
|                                        |                                                                       |                |       |                  |                                         | 11.70                                                                                       | Boring complete at 11.70m BGL - continued by rotary drilling.                                                                                                                                                                           |                         |

| Boring Progress and Water Observations |       |        |                    |                   | L                             | iner Sample          | e Informatio    | General    |                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|-------|--------|--------------------|-------------------|-------------------------------|----------------------|-----------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                   | Depth | Casing | Casing Dia<br>(mm) | Water<br>Standing | From - To                     | Internal Dia<br>(mm) | Recovery<br>(%) | Subsampled | Remarks                                                                                                                                                                                                                                                                                             |
| 21/10/2020                             | 11.70 | 11.70  | 178                | 2.10              | 8.70 - 10.20<br>10.20 - 11.70 | 116<br>116           | 100<br>100      | Yes<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Triple installation: 2 No. 25mm diameter slotted standpipes installed between 1.00-5.00 and 6.00-8.00m and 1 No. 50mm diameter slotted standpipe installed between 13.70-17.70m BGL respectively. |

| All dimensions in metres<br>Scale 1:50.00 | For explanation of symbols and abbreviations see Key Sheets | Checked by: | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |
|-------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-----------------------------|



### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an                |                            | Exploratory Hole No.      |                  |
|------------|---------------------------------------------------|----------------------------|---------------------------|------------------|
| Client:    | South Tees Development Corporation                | MPA_AUK_BH108              |                           |                  |
| Method (Eq | quipment):<br>Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>6.324 | Start Date:<br>21/10/2020 | Sheet:<br>1 of 7 |

| DUN        | I DETA              | UI C              |       |                  |          |                      | 6.                                                                             | TRATA                                    |           |                             |                           |                         |
|------------|---------------------|-------------------|-------|------------------|----------|----------------------|--------------------------------------------------------------------------------|------------------------------------------|-----------|-----------------------------|---------------------------|-------------------------|
|            |                     |                   |       |                  |          |                      | 3                                                                              |                                          |           |                             |                           | Instrument/<br>Backfill |
| Depth<br>& | TCR<br>(SCR)<br>RQD | Fracture<br>Index | Water | Reduced<br>Level | Legend   | Depth<br>(Thickness) |                                                                                | Descr                                    | ription   |                             |                           | Strur                   |
| (Core Ø)   |                     |                   | >     |                  |          |                      | Discontinuity Deta                                                             |                                          |           | Main                        |                           |                         |
| 11.70      | 100<br>(87)         | 10                |       | -5.38            |          | 11.70                | 11.70-11.90m subhorizontal (10-2 spaced planar and irregular rough u           | 20 degrees) closely                      | Extremely | weak red a                  | and green                 |                         |
|            | `30′                |                   |       |                  |          |                      | and rough tight infilled (clay) discont                                        | inuities.                                | weathered | NE partia⊪y<br>I with αvnsi | to distinctly um veining. |                         |
|            |                     | NI                |       |                  |          | _                    | 11.90-12.00m non-intact.                                                       |                                          |           | 9, 60                       | g.                        |                         |
|            |                     | 10                |       |                  |          |                      | 12.00-12.10m subhorizontal (10-2 spaced planar and irregular rough u           | 20 degrees) closely<br>Indulating smooth |           |                             |                           |                         |
|            |                     | NI                |       |                  |          | _                    | and rough tight infilled (clay) discont 12.10-12.20m non-intact.               | inuities.                                |           |                             |                           |                         |
|            |                     | 8                 |       |                  |          | _                    | 12.20-13.20m subhorizontal (10-2                                               | 20 degrees) closely                      |           |                             |                           |                         |
| Ê          |                     |                   |       |                  |          |                      | spaced planar and irregular rough u<br>and rough tight infilled (clay) discont | indulating smooth<br>inuities.           |           |                             |                           |                         |
| (92mm)     |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           |                         |
| 9          |                     |                   |       |                  |          |                      |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  |          |                      |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  |          |                      |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  |          |                      |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           |                         |
| 13.20      |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           |                         |
|            | 100<br>(70)         | NI                |       |                  |          |                      | 13.20-13.65m non-intact.                                                       |                                          |           |                             |                           |                         |
|            | 60                  |                   |       |                  |          |                      |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  |          |                      |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           |                         |
|            |                     | 4                 |       |                  |          | _                    | 13.65-14.70m subhorizontal (10-2                                               |                                          |           |                             |                           | ,                       |
|            |                     |                   |       |                  |          | _                    | spaced planar and irregular rough u<br>and rough tight infilled (clay) discont | indulating smooth inuities.              |           |                             |                           | 0-1                     |
| Ê          |                     |                   |       |                  |          | _                    | 3 0 ( ),                                                                       |                                          |           |                             |                           |                         |
| (92mm)     |                     |                   |       |                  |          | L                    |                                                                                |                                          |           |                             |                           | 000                     |
|            |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           | 000                     |
|            |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           | 00 1                    |
|            |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           | 000                     |
|            |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           | 10 41                   |
|            |                     |                   |       |                  |          | -                    |                                                                                |                                          |           |                             |                           | 000                     |
|            |                     |                   |       |                  |          | -                    |                                                                                |                                          |           |                             |                           |                         |
| 14.70      | 100                 | NI                |       |                  |          | (6.00)               | 14.70-14.80m non-intact.                                                       |                                          |           |                             |                           | 000                     |
|            | (93)<br>57          | 6                 |       |                  |          | _                    | 14.70-14.80m non-intact.<br>14.80-16.20m subhorizontal (10-2                   | 20 degrees) closely                      |           |                             |                           | 000                     |
|            | 5/                  |                   |       |                  |          | -                    | spaced planar and irregular rough u                                            | indulating smooth                        |           |                             |                           | 000                     |
|            |                     |                   |       |                  |          | -                    | and rough tight infilled (clay) discont                                        | uriulues.                                |           |                             |                           | 0 -                     |
|            |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  |          | -                    |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  |          | -                    |                                                                                |                                          |           |                             |                           |                         |
| E (E       |                     |                   |       |                  |          | -                    |                                                                                |                                          |           |                             |                           |                         |
| (92mm)     |                     |                   |       |                  |          | _                    |                                                                                |                                          |           |                             |                           | 1°0 0 1                 |
|            |                     |                   |       |                  |          | -                    |                                                                                |                                          |           |                             |                           |                         |
|            |                     |                   |       |                  | <u> </u> |                      |                                                                                |                                          |           |                             |                           | _ l°2 oH2               |

| Drilling                               | Drilling Progress and Water Observations  |                         |                   | Standa | ard Pene | tration Test             | Flush                          |                |                | General                                                                                                                                                                                                                                                                                             |                             |
|----------------------------------------|-------------------------------------------|-------------------------|-------------------|--------|----------|--------------------------|--------------------------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Date                                   | Depth                                     | Casing                  | Water<br>Standing |        | Туре     | Result                   | From - To                      | Туре           | Returns<br>(%) | Remarks                                                                                                                                                                                                                                                                                             |                             |
| 21/10/2020<br>21/10/2020<br>22/10/2020 | 11.70<br>13.20<br>13.20                   | 11.70<br>11.70<br>11.70 | 2.10<br>5.00      | 11.70  | S        | 50/100mm                 | 11.70 - 13.20<br>13.20 - 17.70 | Water<br>Water | 50<br>100      | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Triple installation: 2 No. 25mm diameter slotted standpipes installed between 1.00-5.00 and 6.00-8.00m and 1 No. 50mm diameter slotted standpipe installed between 13.70-17.70m BGL respectively. |                             |
| 1                                      | All dimensions in metres<br>Scale 1:25.00 |                         |                   |        |          | tion of syn<br>ns see Ke |                                | Chec           | ked by:        | Logged by:<br>D. Portsmouth                                                                                                                                                                                                                                                                         | Contract No.<br><b>4291</b> |

Print Date and Time: 07/12/2020 13:32:38

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

|   | A |
|---|---|
|   |   |
| 5 |   |
| C | 5 |

### **DRILLHOLE RECORD**

| Project: | Metal Processing Area Deep Soil an                  | Metal Processing Area Deep Soil and Groundwater Investigation |                                                       |                           |                  |  |  |  |  |
|----------|-----------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------|------------------|--|--|--|--|
| Client:  | South Tees Development Corporation                  |                                                               | ner Redcar Steelworks, Re<br>::454447.904 N:522784.59 | MPA_AUK_BH108             |                  |  |  |  |  |
| Method ( | (Equipment):<br>Sonic/Coring (Boart Longyear LS250) |                                                               | Ground Level (m):<br>6.324                            | Start Date:<br>21/10/2020 | Sheet:<br>2 of 7 |  |  |  |  |

| RUN              | I DETA              | AILS       |       |         |        |                                                                                             | STRATA                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          | nt/                     |
|------------------|---------------------|------------|-------|---------|--------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------|
| Depth            | TCR                 | Fracture   | ter   | Reduced |        | Depth                                                                                       | Descr                                                                                                                                                                                                                                                                                                                                                               | iption                                                                                                   | Instrument/<br>Backfill |
| &<br>(Core Ø)    | TCR<br>(SCR)<br>RQD | Frac       | Water | Level   | Legend | (Thickness)                                                                                 | Discontinuity Detail                                                                                                                                                                                                                                                                                                                                                | Main                                                                                                     | list B                  |
| 16.20<br>(mm 28) | 100<br>(80)<br>43   | NI 10 NI 6 |       | -11.38  |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 16.20-16.40m non-intact.  16.40-16.50m subhorizontal (10-20 degrees) closely spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities. 16.50-16.70m non-intact.  16.70-17.70m subhorizontal (10-20 degrees) closely spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities. | Extremely weak red and green MUDSTONE partially to distinctly weathered with gypsum veining. (continued) |                         |
|                  |                     |            |       |         |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                     | Complete at 17.70m BGL.                                                                                  |                         |

| Drilling Progress and Water Observations  |       | Standa | ard Pene                                                    | tration Test | Flush |         |           | General                     |                             |                                                                                                                                                                                                                                                                                                    |  |  |
|-------------------------------------------|-------|--------|-------------------------------------------------------------|--------------|-------|---------|-----------|-----------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Date                                      | Depth | Casing | Water<br>Standing                                           | Depth        | Туре  | Result  | From - To | Туре                        | Returns<br>(%)              | Remarks                                                                                                                                                                                                                                                                                            |  |  |
| 22/10/2020                                | 17.70 | 11.70  |                                                             | 17.70        | S     | 50/10mm |           |                             |                             | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Triple installation: 2 No. 25mm diameter slotte standpipes installed between 1.00-5.00 and 6.00-8.00m and 1 No. 50mm diameter slotted standpipe installed between 13.70-17.70m BGL respectively. |  |  |
| All dimensions in metres<br>Scale 1:25.00 |       |        | For explanation of symbols and abbreviations see Key Sheets |              |       | Chec    | ked by:   | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |                                                                                                                                                                                                                                                                                                    |  |  |

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



#### **DRILLHOLE RECORD**

| Project:   | Metal Processing Area Deep Soil an                |                            | Exploratory Hole No.   |               |
|------------|---------------------------------------------------|----------------------------|------------------------|---------------|
| Client:    | South Tees Development Corporation                | MPA_AUK_BH108              |                        |               |
| Method (Eq | quipment):<br>Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>6.324 | Start Date: 21/10/2020 | Sheet: 3 of 7 |





Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

# **DRILLHOLE RECORD**

| Project:   | Metal Processing Area Deep Soil an  |                   | Exploratory Hole No. |        |
|------------|-------------------------------------|-------------------|----------------------|--------|
| Client:    | South Tees Development Corporation  | MPA_AUK_BH108     |                      |        |
| Method (Eq |                                     | Ground Level (m): | Start Date:          | Sheet: |
|            | Sonic/Coring (Boart Longyear LS250) | 6.324             | 21/10/2020           | 4 of 7 |





Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an  |                                                       | Exploratory Hole No. |        |
|------------|-------------------------------------|-------------------------------------------------------|----------------------|--------|
| Client:    | South Tees Development Corporation  | ner Redcar Steelworks, Re<br>::454447.904 N:522784.59 | MPA_AUK_BH108        |        |
| Method (Eq | uipment):                           | Ground Level (m):                                     | Start Date:          | Sheet: |
|            | Sonic/Coring (Boart Longyear LS250) | 6.324                                                 | 21/10/2020           | 5 of 7 |

Figure MPA\_AUK\_BH108.5 MPA\_AUK\_BH108 5.70-7.20m BGL



Figure MPA\_AUK\_BH108.6
MPA\_AUK\_BH108 7.20-8.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil an             |                            | Exploratory Hole No.   |               |
|------------|------------------------------------------------|----------------------------|------------------------|---------------|
| Client:    | South Tees Development Corporation             | MPA_AUK_BH108              |                        |               |
| Method (Ed | quipment): Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>6.324 | Start Date: 21/10/2020 | Sheet: 6 of 7 |

# Figure MPA\_AUK\_BH108.7 MPA\_AUK\_BH108 8.70-10.20m BGL Estimation & PHOTOGRAPHIC SCHAPE METALS PROCESSING AREA MPA\_AUK\_BHID8

## Figure MPA\_AUK\_BH108.8 MPA\_AUK\_BH108 10.20-11.70m BGL METALS PROCESSING AREA MPA\_AUK\_BH108 10.20 10 11.70

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909



#### **DRILLHOLE RECORD**

| Project:  | Metal Processing Area Deep Soil an              | Exploratory Hole No.                                |                            |                        |               |
|-----------|-------------------------------------------------|-----------------------------------------------------|----------------------------|------------------------|---------------|
| Client:   | South Tees Development Corporation              | ner Redcar Steelworks, R<br>::454447.904 N:522784.5 |                            | MPA_AUK_BH108          |               |
| Method (E | Equipment): Sonic/Coring (Boart Longyear LS250) |                                                     | Ground Level (m):<br>6.324 | Start Date: 21/10/2020 | Sheet: 7 of 7 |





### SONIC SAMPLE HOLE RECORD

| Project: | :<br>Metal Processing Area Deep Soil an             |                                                       | Exploratory Hole No.      |                  |
|----------|-----------------------------------------------------|-------------------------------------------------------|---------------------------|------------------|
| Client:  | South Tees Development Corporation                  | mer Redcar Steelworks, Re<br>E:454500.525 N:522880.60 |                           | MPA_AUK_BH109    |
| Method   | (Equipment):<br>Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>7.200                            | Start Date:<br>20/10/2020 | Sheet:<br>1 of 2 |

| SAMP                                      | LES & T                                                        | ESTS                |       |                  |        |                      | STRATA                                                                                                                                                                                                                                                      | ent/                                   |
|-------------------------------------------|----------------------------------------------------------------|---------------------|-------|------------------|--------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Depth                                     | Type<br>No                                                     | Test<br>Result      | Water | Reduced<br>Level | Legend | Depth<br>(Thickness) | Description                                                                                                                                                                                                                                                 | Instrument/<br>Backfill                |
| 0.00-1.20<br>0.60<br>0.80                 | J1 <sub>(U1)</sub><br>B2 <sub>(U1)</sub>                       |                     |       |                  |        |                      | MADE GROUND (Brown green and grey sandy gravel and cobbles. Sand is fine to coarse and includes crushed slag. Gravel is fine to coarse subangular and includes slag. Cobbles are subrounded and includes slag. Slag content is 75-100%. Slag is vesicular). | 28888888888888888888888888888888888888 |
| 1.00                                      | PID                                                            | <0.1ppm             |       |                  |        | -                    |                                                                                                                                                                                                                                                             |                                        |
| 1.20-2.70<br>1.20                         | U2<br>S                                                        | 50/125mm            |       |                  |        | ¢<br>¢<br>¢          | at c1.20m BGL very dense/cobble obstruction.                                                                                                                                                                                                                | i.                                     |
| 2.00                                      | PID                                                            | <0.1ppm             |       |                  |        | <del>-</del>         |                                                                                                                                                                                                                                                             |                                        |
| 2.70-4.20<br>2.70<br>3.00                 | U3 <sub>(SS)</sub><br>S<br>PID                                 | 50/165mm<br><0.1ppm |       |                  |        | (6.95)               | at c.2.70m BGL very dense/cobble obstruction.                                                                                                                                                                                                               |                                        |
| 3.60<br>3.80<br>4.00                      | J3 <sub>(U3)</sub><br>B4 <sub>(U3)</sub><br>PID                | <b>40.4</b> mm m    |       |                  |        | (-<br>-<br>-<br>-    |                                                                                                                                                                                                                                                             |                                        |
| 4.20-5.70<br>4.20                         | U4<br>S                                                        | <0.1ppm<br>N29      |       |                  |        |                      | at c.4.20m BGL medium dense.                                                                                                                                                                                                                                |                                        |
| 5.00                                      | PID                                                            | <0.1ppm             |       |                  |        |                      |                                                                                                                                                                                                                                                             |                                        |
| 5.70-7.20<br>5.70                         | U5 <sub>(SS)</sub>                                             | 50/35mm             |       |                  |        | <del>}</del>         | at c.5.70m BGL very dense/cobble obstruction.                                                                                                                                                                                                               |                                        |
| 6.00<br>6.00                              | ES5 <sub>(U5)</sub><br>PID                                     | <0.1ppm             |       |                  |        |                      |                                                                                                                                                                                                                                                             |                                        |
| 6.60<br>6.80                              | J6 <sub>(U5)</sub><br>B7 <sub>(U5)</sub>                       |                     |       | 0.25             |        | 6.95                 |                                                                                                                                                                                                                                                             |                                        |
| 7.00<br>7.20-8.70<br>7.20<br>7.40<br>7.50 | PID U6 <sub>(SS)</sub> S J8 <sub>(U6)</sub> B9 <sub>(U6)</sub> | <0.1ppm<br>N19      |       |                  | ×      | -                    | Medium dense grey brown silty SAND with silt lenses and fragments of shell. Sand is fine to coarse.                                                                                                                                                         |                                        |

|            |            |           |                    |                   | •           |                      |                 |            |                                                                                                       |
|------------|------------|-----------|--------------------|-------------------|-------------|----------------------|-----------------|------------|-------------------------------------------------------------------------------------------------------|
| Borin      | g Progress | s and Wat | er Observa         | ations            | L           | iner Sample          | e Informatio    | n          | General                                                                                               |
| Date       | Depth      | Casing    | Casing Dia<br>(mm) | Water<br>Standing | From - To   | Internal Dia<br>(mm) | Recovery<br>(%) | Subsampled | Remarks                                                                                               |
| 20/10/2020 | 0.00       | 0.00      | 178                |                   | 0.00 - 1.20 | 116                  | 100             | Yes        | (1) Description derived from drillers daily report.                                                   |
|            |            |           |                    |                   | 1.20 - 2.70 | 116                  | 100             | No         | (2) Inspection pit dug prior to drilling.                                                             |
|            |            |           |                    |                   | 2.70 - 4.20 | 116                  | 100             | Yes        | (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.50-6.50m and 1 No. |
|            |            |           |                    |                   | 4.20 - 5.70 | 116                  | 100             | No         | 50mm diameter slotted standpipe installed between                                                     |
|            |            |           |                    |                   | 5.70 - 7.20 | 116                  | 100             | Yes        | 7.50-11.50m BGL respectively.                                                                         |
|            |            |           |                    |                   | 7.20 - 8.70 | 116                  | 100             | Yes        | (4) UXO testing during drilling.                                                                      |
|            |            |           |                    |                   |             |                      |                 |            |                                                                                                       |
|            |            |           |                    |                   |             |                      |                 |            |                                                                                                       |
|            |            |           |                    |                   |             |                      |                 |            |                                                                                                       |
|            |            | l         |                    | 1                 |             |                      |                 |            |                                                                                                       |

### SONIC SAMPLE HOLE RECORD

| Pro  | Metal Processing Area Deep Soil an                   | Metal Processing Area Deep Soil and Groundwater Investigation |                                                       |                           |                  |  |  |  |  |  |
|------|------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------|------------------|--|--|--|--|--|
| Clie | nt: South Tees Development Corporation               |                                                               | ner Redcar Steelworks, Re<br>::454500.525 N:522880.60 |                           | MPA_AUK_BH109    |  |  |  |  |  |
| Met  | hod (Equipment): Sonic/Coring (Boart Longyear LS250) |                                                               | Ground Level (m):<br>7.200                            | Start Date:<br>20/10/2020 | Sheet:<br>2 of 2 |  |  |  |  |  |

| SAMP                                   | ESTS                                                                  |                | STRATA |                  |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |  |
|----------------------------------------|-----------------------------------------------------------------------|----------------|--------|------------------|--------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Depth                                  | Type<br>No                                                            | Test<br>Result | Water  | Reduced<br>Level | Legend | Depth<br>(Thickness)                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                      | Instrument/<br>Backfill |  |
| 8.70-10.20<br>8.70                     | U7 S                                                                  | N32            |        |                  |        | [4.25)                                                                                      | at 6.6.7 6 m B G E dollace.                                                                                                                                                                                                                                                                                                                                                                                                      |                         |  |
| 10.20-11.70<br>10.20<br>10.40<br>10.50 | U8 <sub>(SS)</sub><br>S<br>J11 <sub>(U8)</sub><br>B12 <sub>(U8)</sub> | N13            |        | 400              |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |  |
| 11.40<br>11.50<br>11.70-13.20<br>11.70 | J13 <sub>(U8)</sub><br>B14 <sub>(U8)</sub><br>U9 <sub>(SS)</sub><br>S | N36            |        | -4.50            |        | 11.20                                                                                       | Firm brown orange slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subrounded and includes sandstone and mudstone.  (Engineer notes evidence of structure/laminae within the fabric of the clay).  Red brown very clayey GRAVEL/very gravelly CLAY. Gravel is fine to medium angular and includes mudstone weathered.  (Engineer notes weathering profile of an extremely weak mudstone). |                         |  |
|                                        |                                                                       |                |        | -6.00            |        | 13.20                                                                                       | Boring complete at 13.20m BGL - continued by rotary drilling.                                                                                                                                                                                                                                                                                                                                                                    |                         |  |

| Borin      | Boring Progress and Water Observations |        |                    |                   |                                                | iner Sample          | e Informatio      | General          |                                                                                                                                                                                                                                                                                                                      |  |  |
|------------|----------------------------------------|--------|--------------------|-------------------|------------------------------------------------|----------------------|-------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Date       | Depth                                  | Casing | Casing Dia<br>(mm) | Water<br>Standing | From - To                                      | Internal Dia<br>(mm) | Recovery<br>(%)   | Subsampled       | Remarks                                                                                                                                                                                                                                                                                                              |  |  |
| 20/10/2020 | 13.20                                  | 13.20  | 178                | 2.50              | 8.70 - 10.20<br>10.20 - 11.70<br>11.70 - 13.20 | 116<br>116<br>116    | 100<br>100<br>100 | No<br>Yes<br>Yes | (1) Description derived from drillers daily report. (2) Inspection pit dug prior to drilling. (3) Double installation: 1 No. 25mm diameter slotted standpipe installed between 1.50-6.50m and 1 No. 50mm diameter slotted standpipe installed between 7.50-11.50m BGL respectively. (4) UXO testing during drilling. |  |  |

|                                           | <br> |                             | 1 | <br> |            |       |                    |                             |
|-------------------------------------------|------|-----------------------------|---|------|------------|-------|--------------------|-----------------------------|
| All dimensions in metres<br>Scale 1:50.00 |      | nation of sy<br>tions see K |   | C    | hecked by: | , ,,, | ged by:<br>tsmouth | Contract No.<br><b>4291</b> |

| <b>1</b> |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |

### **DRILLHOLE RECORD**

| Project:    | Metal Processing Area Deep Soil an               | d Groundwat | er Investigation                                      |                           | Exploratory Hole No. |
|-------------|--------------------------------------------------|-------------|-------------------------------------------------------|---------------------------|----------------------|
| Client:     | South Tees Development Corporation               |             | mer Redcar Steelworks, Re<br>E:454500.525 N:522880.60 |                           | MPA_AUK_BH109        |
| Method (Equ | uipment):<br>Sonic/Coring (Boart Longyear LS250) |             | Ground Level (m):<br>7.200                            | Start Date:<br>20/10/2020 | Sheet:<br>1 of 8     |

| DIIN                   | DETA                | VII C    |       |                  |        |                      | STRATA                                                                                                                                                  |                                            |           |                         |
|------------------------|---------------------|----------|-------|------------------|--------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|-------------------------|
|                        |                     |          |       |                  |        |                      |                                                                                                                                                         | ription                                    |           | Instrument/<br>Backfill |
| Depth<br>&<br>(Core Ø) | TCR<br>(SCR)<br>RQD | Fracture | Water | Reduced<br>Level | Legend | Depth<br>(Thickness) |                                                                                                                                                         | 1                                          |           | nstru<br>Bac            |
|                        |                     |          | >     |                  |        | ,                    | Discontinuity Detail                                                                                                                                    | Mair                                       |           | =                       |
| 13.20                  | 100<br>(63)<br>37   | NI       |       | -6.00            |        | 13.20                | 13.20-13.75m non-intact.                                                                                                                                | Extremely weak red partially to distinctly | MUDSTONE  |                         |
|                        | 37                  |          |       |                  |        | _                    |                                                                                                                                                         | partially to distinctly t                  | veamered. |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | _                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     | 5        |       |                  |        | _                    | 13.75-14.70m subhorizontal (10-20 degrees) closely                                                                                                      |                                            |           |                         |
| Ē                      |                     |          |       |                  |        | _                    | 13.75-14.70m subhorizontal (10-20 degrees) closely spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities. |                                            |           |                         |
| (92mm)                 |                     |          |       |                  |        | _                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | _                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
| 14.70                  | 97                  | NI       | _     |                  |        | -                    | 14.70-15.05m non-intact.                                                                                                                                |                                            |           |                         |
|                        | (77)<br>57          | '*'      |       |                  |        | -                    | 14.70 To.Soft Hor intage.                                                                                                                               |                                            |           |                         |
|                        | 31                  |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | _                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     | 5        |       |                  |        | -                    | 15.05-16.20m subhorizontal (10-20 degrees) closely                                                                                                      |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    | spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities.                                                    |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
| (92mm)                 |                     |          |       |                  |        | _                    |                                                                                                                                                         |                                            |           |                         |
| (95                    |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | =                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | _                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | _                    |                                                                                                                                                         |                                            |           |                         |
| 16.20                  |                     |          |       |                  |        | -<br>(6.00)          |                                                                                                                                                         |                                            |           |                         |
| 10.20                  | 100                 | NI       |       |                  |        | (6.00)               | 16.20-16.40m non-intact.                                                                                                                                |                                            |           |                         |
|                        | (87)<br>60          |          |       |                  |        | -                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     | 6        |       |                  |        | -                    | 16.40-18.70m subhorizontal (10-20 degrees) closely spaced planar and irregular rough undulating smooth and rough tight infilled (clay) discontinuities. |                                            |           |                         |
|                        |                     |          |       |                  |        |                      | and rough tight infilled (clay) discontinuities.                                                                                                        |                                            |           |                         |
|                        |                     |          |       |                  |        |                      |                                                                                                                                                         |                                            |           |                         |
| 1                      |                     |          |       |                  |        |                      |                                                                                                                                                         |                                            |           |                         |
| -                      |                     |          |       |                  |        |                      |                                                                                                                                                         |                                            |           |                         |
| (92mm)                 |                     |          |       |                  |        | L                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        | _                    |                                                                                                                                                         |                                            |           |                         |
|                        |                     |          |       |                  |        |                      |                                                                                                                                                         |                                            |           |                         |

| Drilling                                                                            | Drilling Progress and Water Observations |        |                   | Standa | ard Pene | tration Test | Flush     |                             |                             | General                                                                                                                                                                                               |                                                                                              |
|-------------------------------------------------------------------------------------|------------------------------------------|--------|-------------------|--------|----------|--------------|-----------|-----------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Date                                                                                | Depth                                    | Casing | Water<br>Standing | Depth  | Туре     | Result       | From - To | Туре                        | Type Returns Remarks        |                                                                                                                                                                                                       |                                                                                              |
| 20/10/2020                                                                          | 13.20                                    | 13.20  |                   | 13.20  | S        | 50/50mm      |           |                             |                             | (1) Description derived fi<br>(2) Inspection pit dug pri<br>(3) Double installation: 1<br>slotted standpipe installe<br>and 1 No. 50mm diamet<br>installed between 7.50-1<br>(4) UXO testing during d | No. 25mm diameter<br>d between 1.50-6.50m<br>er slotted standpipe<br>1.50m BGL respectively. |
| All dimensions in metres Scale 1:25.00  For explanation of symaboreviations see Key |                                          |        |                   |        |          | Chec         | ked by:   | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |                                                                                                                                                                                                       |                                                                                              |

| A        | Head Office:<br>Regional Office: | Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL | Tel: 0191 387 4700 Fax: 0191 3<br>Tel: 01772 735 300 Fax: 01772 |
|----------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|          |                                  | DRILLHOLE RECORD                                                                                                                                                |                                                                 |
| Project: | Metal Proc                       | essing Area Deep Soil and Groundwater Investigation                                                                                                             |                                                                 |

| Project:                                                | Metal Processing Area Deep Soil and Groundwater Investigation |      |                              |  |                                                       |                           |               |   |  |
|---------------------------------------------------------|---------------------------------------------------------------|------|------------------------------|--|-------------------------------------------------------|---------------------------|---------------|---|--|
| Client:                                                 | South Te                                                      | es D | evelopment Corporation       |  | mer Redcar Steelworks, Re<br>E:454500.525 N:522880.60 | MPA_AUK_BI                | 1109          |   |  |
| Method (Equipment): Sonic/Coring (Boart Longyear LS250) |                                                               |      | oring (Boart Longyear LS250) |  | Ground Level (m):<br>7.200                            | Start Date:<br>20/10/2020 | Sheet: 2 of 8 |   |  |
| RUN DE                                                  | ETAILS                                                        |      |                              |  | STRATA                                                |                           |               | > |  |

| RUN            | RUN DETAILS         |      |       |               | STRATA |                   |                      |         |           |  |  |
|----------------|---------------------|------|-------|---------------|--------|-------------------|----------------------|---------|-----------|--|--|
| Depth          | TCR                 | ture | iter  | Reduced       | Logond | Depth             | Descr                | ription | trume     |  |  |
| (Core Ø)       | RQD                 | Frac | ×     | Level         | Legend | (Thickness)       | Discontinuity Detail | Main    |           |  |  |
| Depth (Core Ø) | TCR<br>(SCR)<br>RQD | Ni 2 | Water | Reduced Level | Legenu | Depth (Thickness) | Descr                | ·       | Instument |  |  |
|                |                     |      |       |               |        |                   |                      |         |           |  |  |

| Drilling                                                                                    | Drilling Progress and Water Observations |        |                   | Standa | ard Pene | tration Test | Flush     |                             |                             | General                                                                                                                                                                                               |                                                                                              |  |
|---------------------------------------------------------------------------------------------|------------------------------------------|--------|-------------------|--------|----------|--------------|-----------|-----------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Date                                                                                        | Depth                                    | Casing | Water<br>Standing | Depth  | Туре     | Result       | From - To | Туре                        | Returns<br>(%)              | Treatment                                                                                                                                                                                             |                                                                                              |  |
| 20/10/2020                                                                                  | 19.20                                    | 13.20  | 2.50              | 19.20  | S        | 50/20mm      |           |                             |                             | (1) Description derived fi<br>(2) Inspection pit dug pri<br>(3) Double installation: 1<br>slotted standpipe installe<br>and 1 No. 50mm diamet<br>installed between 7.50-1<br>(4) UXO testing during d | No. 25mm diameter<br>d between 1.50-6.50m<br>er slotted standpipe<br>1.50m BGL respectively. |  |
| All dimensions in metres  Scale 1:25.00  For explanation of symmatric abbreviations see Key |                                          |        |                   |        |          | Chec         | ked by:   | Logged by:<br>D. Portsmouth | Contract No.<br><b>4291</b> |                                                                                                                                                                                                       |                                                                                              |  |

Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG
Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL

Tel: 0191 387 4700 Fax: 0191 387 4710
Tel: 01772 735 300 Fax: 01772 735 999

# **DRILLHOLE RECORD**

PRELIM2

Metal Processing Area Deep Soil and Groundwater Investigation Exploratory Hole No. Client: Former Redcar Steelworks, Redcar MPA\_AUK\_BH109 South Tees Development Corporation E:454500.525 N:522880.604 Start Date: 20/10/2020 Ground Level (m): 7.200 Method (Equipment): Sonic/Coring (Boart Longyear LS250) 3 of 8

Figure MPA\_AUK\_BH109.1 MPA\_AUK\_BH109 0.00-1.20m BGL



Figure MPA\_AUK\_BH109.2 MPA\_AUK\_BH109 1.20-2.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



#### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil and               |                                                       | Exploratory Hole No.   |               |
|------------|---------------------------------------------------|-------------------------------------------------------|------------------------|---------------|
| Client:    | South Tees Development Corporation                | ner Redcar Steelworks, Re<br>::454500.525 N:522880.60 |                        | MPA_AUK_BH109 |
| Method (Eq | quipment):<br>Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>7.200                            | Start Date: 20/10/2020 | Sheet: 4 of 8 |

### Figure MPA\_AUK\_BH109.3 MPA\_AUK\_BH109 2.70-4.20m BGL



### Figure MPA\_AUK\_BH109.4 MPA\_AUK\_BH109 4.20-5.70m BGL



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



### **DRILLHOLE RECORD**

PRELIM2

| Project:  | Metal Processing Area Deep Soil an                                                                       |  | Exploratory Hole No. |             |               |
|-----------|----------------------------------------------------------------------------------------------------------|--|----------------------|-------------|---------------|
| Client:   | South Tees Development Corporation  Location: Former Redcar Steelworks, Redcar E:454500.525 N:522880.604 |  |                      |             | MPA_AUK_BH109 |
| Method (E | Equipment):                                                                                              |  | Ground Level (m):    | Start Date: | Sheet:        |
|           | Sonic/Coring (Boart Longyear LS250)                                                                      |  | 7.200                | 20/10/2020  | 5 of 8        |

### Figure MPA\_AUK\_BH109.5 MPA\_AUK\_BH109 5.70-7.20m BGL METALS PROCESSING AREA METALS FR. 100 4291 MPA\_AUK\_BHI09 5.70 10 7.20



Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Tel: 0191 387 4700 Fax: 0191 387 4710 Init 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999



#### **DRILLHOLE RECORD**

PRELIM2

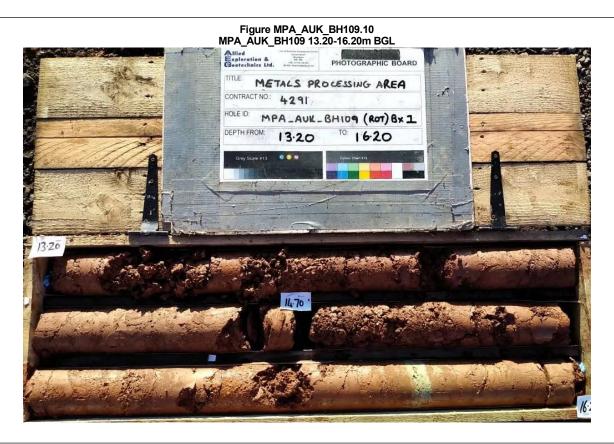
| Project:   | Metal Processing Area Deep Soil an             |                                                       | Exploratory Hole No.   |               |
|------------|------------------------------------------------|-------------------------------------------------------|------------------------|---------------|
| Client:    | South Tees Development Corporation             | ner Redcar Steelworks, Re<br>::454500.525 N:522880.60 |                        | MPA_AUK_BH109 |
| Method (Ed | quipment): Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>7.200                            | Start Date: 20/10/2020 | Sheet: 6 of 8 |



## Figure MPA\_AUK\_BH109.8 MPA\_AUK\_BH109 10.20-11.70m BGL METALS PROCESSING AREA MPA\_AUK\_BHIO9 10.20 11.70

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 0191 387 4700 Fax: 0191 387 4710 Tel: 01772 735 909




#### **DRILLHOLE RECORD**

PRELIM2

| Project:   | Metal Processing Area Deep Soil ar                | Exploratory Hole No. |                            |                        |               |
|------------|---------------------------------------------------|----------------------|----------------------------|------------------------|---------------|
| Client:    | South Tees Development Corporation                | MPA_AUK_BH109        |                            |                        |               |
| Method (Eq | quipment):<br>Sonic/Coring (Boart Longvear LS250) | •                    | Ground Level (m):<br>7 200 | Start Date: 20/10/2020 | Sheet: 7 of 8 |

Figure MPA\_AUK\_BH109.9 MPA\_AUK\_BH109 11.70-13.20m BGL





# **DRILLHOLE RECORD**

| Project:  | Metal Processing Area Deep Soil an              | Exploratory Hole No.                               |                        |               |
|-----------|-------------------------------------------------|----------------------------------------------------|------------------------|---------------|
| Client:   | South Tees Development Corporation              | ner Redcar Steelworks, I<br>::454500.525 N:522880. |                        | MPA_AUK_BH109 |
| Method (E | equipment): Sonic/Coring (Boart Longyear LS250) | Ground Level (m):<br>7.200                         | Start Date: 20/10/2020 | Sheet: 8 of 8 |





Certificate Number 20-20302,20-21040,20-21041,20-21312,20-21397,20-

21491,20-21736

09-Nov-20

Client Allied Exploration & Geotechnics Limited

Unit 25

Stella Gill Industrial Estate

Pelton Fell DH2 2RG

Our Reference 20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-2

Client Reference 4291

Order No (not supplied)

Contract Title Metal Processing Area Deep Soil and Groundwater Investigation

Description 10 Soil samples, 4 Leachate samples.

Date Received 13-Oct-20

Date Started 13-Oct-20

Date Completed 09-Nov-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager







# **Summary of Chemical Analysis Matrix Descriptions**

Our Ref 20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-21736

Client Ref 4291

Contract Title Metal Processing Area Deep Soil and Groundwater Investigation

| Sample ID  | Other ID | Depth  | Lab No   | Completed | <b>Matrix Description</b> |
|------------|----------|--------|----------|-----------|---------------------------|
| Julipic ID |          | DCDCII | LUD I 10 | Compicted | Triati in Description     |

|               |    |     |         |            | •                                                                               |
|---------------|----|-----|---------|------------|---------------------------------------------------------------------------------|
| MPA_AUK_BH105 | 5  | 5   | 1743676 | 03/11/2020 | Dark grey gravelly SAND                                                         |
| MPA_AUK_BH105 | 8  | 8.5 | 1743677 | 03/11/2020 | Dark brown SAND                                                                 |
| MPA_AUK_BH102 | 5  | 5.2 | 1748193 | 03/11/2020 | Dark brown very gravelly SAND                                                   |
| MPA_AUK_BH101 | 5  | 4.7 | 1748195 | 03/11/2020 | Dark grey very gravelly SAND (Possible made ground - slag)                      |
| MPA_AUK_BH109 | 5  | 6   | 1749536 | 03/11/2020 | Dark grey GRAVEL (sample matrix outside MCERTS scope of accreditation)          |
| MPA_AUK_BH109 | 10 | 8   | 1749537 | 03/11/2020 | Dark brown SAND                                                                 |
| MPA_AUK_BH108 | 5  | 5.5 | 1750159 | 03/11/2020 | Dark grey sandy GRAVEL (sample matrix outside MCERTS scope of accreditation)    |
| MPA_AUK_BH107 | 5  | 6   | 1750643 | 03/11/2020 | Dark grey sandy GRAVEL (sample matrix outside MCERTS scope of accreditation)    |
| MPA_AUK_BH107 | 8  | 8   | 1750644 | 03/11/2020 | Dark brown sandy CLAY                                                           |
| MPA_AUK_BH106 | 5  | 5.1 | 1752052 | 03/11/2020 | Grey sandy, clayey GRAVEL (sample matrix outside MCERTS scope of accreditation) |
|               |    |     |         |            |                                                                                 |



20-20302,20-21040,20-21041,20-Our Ref 21312,20-21397,20-21491,20-21736 Client Ref 4291

Metal Processing Area Deep Soil and

Contract Title Groundwater Investigation

| Lab No        | 1743676    | 1743677    | 1748193    | 1748195    | 1749536    |
|---------------|------------|------------|------------|------------|------------|
|               | MPA_AUK_BH | MPA_AUK_BH | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_BH |
| Sample ID     | 105        | 105        | H102       | H101       | 109        |
| Depth         | 5.00       | 8.50       | 5.20       | 4.70       | 6.00       |
| Other ID      | 5          | 8          | 5          | 5          | 5          |
| Sample Type   | ES         | ES         | ES         | ES         | SOIL       |
| Sampling Date | 09/10/2020 | 09/10/2020 | 15/10/2020 | 19/10/2020 | 20/10/2020 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        | n/s        |

Test Method LOD Units Metals Aluminium **DETSC 2301\*** 1 mg/kg 54000 760 78000 7900 60000 Antimony **DETSC 2301\*** 1 mg/kg < 1.0 < 1.0 < 1.0 7.0 < 1.0 0.2 Arsenic **DETSC 2301#** mg/kg 7.4 4.4 14 3.6 4.3 Barium 1.5 mg/kg 250 6.6 480 75 820 **DETSC 2301#** Beryllium **DETSC 2301#** 0.2 mg/kg 6.9 < 0.2 8.8 1.1 7.7 0.2 Boron, Water Soluble **DETSC 2311#** mg/kg 6.2 0.7 2.1 0.3 9.4 < 0.1 0.1 mg/kg 0.1 < 0.1 0.1 0.4 Cadmium **DETSC 2301#** Chromium **DETSC 2301#** 0.15 mg/kg 8.6 2.6 12 520 4.3 < 1.0 < 1.0 < 1.0 Chromium, Hexavalent 1 mg/kg < 1.0 < 1.0 **DETSC 2204\*** mg/kg Copper **DETSC 2301#** 0.2 8.9 6.2 11 14 8.8 25 2100 4700 5100 48000 2200 Iron **DETSC 2301** mg/kg Lead **DETSC 2301#** 0.3 mg/kg 4.2 2.6 7.9 6.6 1.7 35000 27000 3900 34000 31000 Magnesium **DETSC 2301\*** 1 mg/kg Manganese **DETSC 2301#** 20 mg/kg 1000 100 3800 21000 4900 **DETSC 2325#** 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Mercury 0.4 < 0.4 Molybdenum **DETSC 2301#** mg/kg < 0.4 0.7 < 0.4 < 0.4 Nickel DETSC 2301# 1 mg/kg 1.1 2.3 2.9 7.6 < 1.0 Silicon 10 66000 190000 56000 53000 58000 mg/kg **DETSC 2301\*** Vanadium 0.8 37 4500 **DETSC 2301#** mg/kg 8.4 63 23 17 Zinc **DETSC 2301#** 1 mg/kg 14 24 29 7.1 Inorganics рН **DETSC 2008#** рН 10.0 8.2 11.1 11.9 10.2 < 0.1 Cyanide, Total **DETSC 2130#** 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 Cyanide, Free **DETSC 2130#** 0.1 mg/kg < 0.1 < 0.1 0.6 mg/kg < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 Thiocyanate **DETSC 2130#** 0.1 0.4 0.2 1.8 1.5 0.5 Organic matter **DETSC 2002#** Sulphate Aqueous Extract as SO4 10 mg/l 1200 110 400 12 620 **DETSC 2076#** Sulphur (free) **DETSC 3049#** 0.75 mg/kg 18 4.4 29 < 0.75 22



20-20302,20-21040,20-21041,20-Our Ref 21312,20-21397,20-21491,20-21736 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No        | 1743676    | 1743677    | 1748193    | 1748195    | 1749536    |
|---------------|------------|------------|------------|------------|------------|
|               | MPA_AUK_BH | MPA_AUK_BH | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_BH |
| Sample ID     | 105        | 105        | H102       | H101       | 109        |
| Depth         | 5.00       | 8.50       | 5.20       | 4.70       | 6.00       |
| Other ID      | 5          | 8          | 5          | 5          | 5          |
| Sample Type   | ES         | ES         | ES         | ES         | SOIL       |
| Sampling Date | 09/10/2020 | 09/10/2020 | 15/10/2020 | 19/10/2020 | 20/10/2020 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        | n/s        |

|                          |             | Sampli | ing Time | n/s    | n/s    | n/s    | n/s    | n/s    |
|--------------------------|-------------|--------|----------|--------|--------|--------|--------|--------|
| Test                     | Method      | LOD    | Units    |        |        |        |        |        |
| Petroleum Hydrocarbons   |             |        |          |        |        |        |        |        |
| Aliphatic C5-C6          | DETSC 3321* | 0.01   | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aliphatic C6-C8          | DETSC 3321* | 0.01   | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aliphatic C8-C10         | DETSC 3321* | 0.01   | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aliphatic C10-C12        | DETSC 3072# | 1.5    | mg/kg    | < 1.5  | < 1.5  | < 1.5  | < 1.5  | < 1.5  |
| Aliphatic C12-C16        | DETSC 3072# | 1.2    | mg/kg    | < 1.2  | < 1.2  | < 1.2  | < 1.2  | < 1.2  |
| Aliphatic C16-C21        | DETSC 3072# | 1.5    | mg/kg    | < 1.5  | < 1.5  | 29     | < 1.5  | < 1.5  |
| Aliphatic C21-C35        | DETSC 3072# | 3.4    | mg/kg    | < 3.4  | < 3.4  | 700    | < 3.4  | < 3.4  |
| Aliphatic C5-C35         | DETSC 3072* | 10     | mg/kg    | < 10   | < 10   | 730    | < 10   | < 10   |
| Aromatic C5-C7           | DETSC 3321* | 0.01   | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aromatic C7-C8           | DETSC 3321* | 0.01   | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aromatic C8-C10          | DETSC 3321* | 0.01   | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aromatic C10-C12         | DETSC 3072# | 0.9    | mg/kg    | < 0.9  | < 0.9  | < 0.9  | < 0.9  | < 0.9  |
| Aromatic C12-C16         | DETSC 3072# | 0.5    | mg/kg    | < 0.5  | < 0.5  | 24     | < 0.5  | < 0.5  |
| Aromatic C16-C21         | DETSC 3072# | 0.6    | mg/kg    | < 0.6  | < 0.6  | 120    | < 0.6  | < 0.6  |
| Aromatic C21-C35         | DETSC 3072# | 1.4    | mg/kg    | < 1.4  | < 1.4  | 2100   | < 1.4  | < 1.4  |
| Aromatic C5-C35          | DETSC 3072* | 10     | mg/kg    | < 10   | < 10   | 2300   | < 10   | < 10   |
| TPH Ali/Aro Total C5-C35 | DETSC 3072* | 10     | mg/kg    | < 10   | < 10   | 3000   | < 10   | < 10   |
| PAHs                     |             |        |          |        |        |        |        |        |
| Naphthalene              | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 0.83   | < 0.03 | < 0.03 |
| Acenaphthylene           | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Acenaphthene             | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 1.4    | < 0.03 | < 0.03 |
| Fluorene                 | DETSC 3303  | 0.03   | mg/kg    | < 0.03 | < 0.03 | 1.6    | < 0.03 | < 0.03 |
| Phenanthrene             | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 5.2    | < 0.03 | < 0.03 |
| Anthracene               | DETSC 3303  | 0.03   | mg/kg    | < 0.03 | < 0.03 | 1.7    | < 0.03 | < 0.03 |
| Fluoranthene             | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 5.0    | 0.03   | < 0.03 |
| Pyrene                   | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 3.6    | < 0.03 | < 0.03 |
| Benzo(a)anthracene       | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 1.7    | < 0.03 | < 0.03 |
| Chrysene                 | DETSC 3303  | 0.03   | mg/kg    | < 0.03 | < 0.03 | 1.2    | < 0.03 | < 0.03 |
| Benzo(b)fluoranthene     | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 1.1    | < 0.03 | < 0.03 |
| Benzo(k)fluoranthene     | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 0.52   | < 0.03 | < 0.03 |
| Benzo(a)pyrene           | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 0.98   | < 0.03 | < 0.03 |
| Indeno(1,2,3-c,d)pyrene  | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 0.33   | < 0.03 | < 0.03 |
| Dibenzo(a,h)anthracene   | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 0.10   | < 0.03 | < 0.03 |
| Benzo(g,h,i)perylene     | DETSC 3303# | 0.03   | mg/kg    | < 0.03 | < 0.03 | 0.36   | < 0.03 | < 0.03 |
| PAH - USEPA 16, Total    | DETSC 3303  | 0.1    | mg/kg    | < 0.10 | < 0.10 | 26     | < 0.10 | < 0.10 |



20-20302,20-21040,20-21041,20-Our Ref 21312,20-21397,20-21491,20-21736

Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No        | 1743676    | 1743677    | 1748193    | 1748195    | 1749536    |
|---------------|------------|------------|------------|------------|------------|
|               | MPA_AUK_BH | MPA_AUK_BH | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_BH |
| Sample ID     | 105        | 105        | H102       | H101       | 109        |
| Depth         | 5.00       | 8.50       | 5.20       | 4.70       | 6.00       |
| Other ID      | 5          | 8          | 5          | 5          | 5          |
| Sample Type   | ES         | ES         | ES         | ES         | SOIL       |
| Sampling Date | 09/10/2020 | 09/10/2020 | 15/10/2020 | 19/10/2020 | 20/10/2020 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        | n/s        |

| Test                | Method      | LOD  | Units |       |       |        |       |       |
|---------------------|-------------|------|-------|-------|-------|--------|-------|-------|
| PCBs                |             |      |       |       |       |        |       |       |
| PCB 28 + PCB 31     | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01 |       |       |
| PCB 52              | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01 |       |       |
| PCB 101             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01 |       |       |
| PCB 118             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01 |       |       |
| PCB 153             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01 |       |       |
| PCB 138             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01 |       |       |
| PCB 180             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01 |       |       |
| PCB 7 Total         | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01 |       |       |
| Phenols             |             |      |       |       |       |        |       |       |
| Phenol - Monohydric | DETSC 2130# | 0.3  | mg/kg | < 0.3 | < 0.3 | < 0.3  | < 0.3 | < 0.3 |



20-20302,20-21040,20-21041,20-Our Ref 21312,20-21397,20-21491,20-21736 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No        | 1749537    | 1750159    | 1750643    | 1750644    | 1752052    |
|---------------|------------|------------|------------|------------|------------|
|               | MPA_AUK_BH | MPA_AUK_B  | MPA_AUK_BH | MPA_AUK_BH | MPA_AUK_BH |
| Sample ID     | 109        | H108       | 107        | 107        | 106        |
| Depth         | 8.00       | 5.50       | 6.00       | 8.00       | 5.10       |
| Other ID      | 10         | 5          | 5          | 8          | 5          |
| Sample Type   | SOIL       | ES         | SOIL       | SOIL       | ES         |
| Sampling Date | 20/10/2020 | 21/10/2020 | 22/10/2020 | 22/10/2020 | 26/10/2020 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        | n/s        |

| Test                            | Method      | LOD  | Units |        |        |        |        |        |
|---------------------------------|-------------|------|-------|--------|--------|--------|--------|--------|
| Metals                          |             |      |       |        |        |        |        |        |
| Aluminium                       | DETSC 2301* | 1    | mg/kg | 1400   | 20000  | 63000  | 8700   | 67000  |
| Antimony                        | DETSC 2301* | 1    | mg/kg | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Arsenic                         | DETSC 2301# | 0.2  | mg/kg | 4.5    | 3.6    | 3.4    | 8.8    | 3.2    |
| Barium                          | DETSC 2301# | 1.5  | mg/kg | 16     | 490    | 380    | 110    | 270    |
| Beryllium                       | DETSC 2301# | 0.2  | mg/kg | < 0.2  | 7.0    | 7.4    | 0.7    | 7.0    |
| Boron, Water Soluble            | DETSC 2311# | 0.2  | mg/kg | 1.3    | 6.3    | 7.4    | 7.0    | 3.7    |
| Cadmium                         | DETSC 2301# | 0.1  | mg/kg | < 0.1  | < 0.1  | < 0.1  | 0.1    | < 0.1  |
| Chromium                        | DETSC 2301# | 0.15 | mg/kg | 3.6    | 4.6    | 8.7    | 17     | 9.2    |
| Chromium, Hexavalent            | DETSC 2204* | 1    | mg/kg | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Copper                          | DETSC 2301# | 0.2  | mg/kg | 7.5    | 9.3    | 9.2    | 15     | 1200   |
| Iron                            | DETSC 2301  | 25   | mg/kg | 5600   | 2000   | 3500   | 20000  | 1600   |
| Lead                            | DETSC 2301# | 0.3  | mg/kg | 5.7    | 1.5    | 6.7    | 15     | 1.1    |
| Magnesium                       | DETSC 2301* | 1    | mg/kg | 3600   | 12000  | 31000  | 8900   | 26000  |
| Manganese                       | DETSC 2301# | 20   | mg/kg | 120    | 2400   | 1800   | 340    | 1800   |
| Mercury                         | DETSC 2325# | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| Molybdenum                      | DETSC 2301# | 0.4  | mg/kg | < 0.4  | < 0.4  | 0.4    | 1.4    | < 0.4  |
| Nickel                          | DETSC 2301# | 1    | mg/kg | 3.0    | < 1.0  | 1.3    | 19     | < 1.0  |
| Silicon                         | DETSC 2301* | 10   | mg/kg | 170000 | 49000  | 65000  | 160000 | 61000  |
| Vanadium                        | DETSC 2301# | 0.8  | mg/kg | 10     | 21     | 35     | 32     | 60     |
| Zinc                            | DETSC 2301# | 1    | mg/kg | 18     | 11     | 15     | 61     | 110    |
| Inorganics                      |             |      |       |        |        |        |        |        |
| рН                              | DETSC 2008# |      | рН    | 8.3    | 10.3   | 10.9   | 8.7    | 9.7    |
| Cyanide, Total                  | DETSC 2130# | 0.1  | mg/kg | < 0.1  | 0.2    | < 0.1  | < 0.1  | < 0.1  |
| Cyanide, Free                   | DETSC 2130# | 0.1  | mg/kg | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Thiocyanate                     | DETSC 2130# | 0.6  | mg/kg | 0.9    | < 0.6  | < 0.6  | < 0.6  | < 0.6  |
| Organic matter                  | DETSC 2002# | 0.1  | %     | 0.6    | 0.2    | 0.5    | 2.6    | 0.5    |
| Sulphate Aqueous Extract as SO4 | DETSC 2076# | 10   | mg/l  | 220    | 1700   | 720    | 680    | 2000   |
| Sulphur (free)                  | DETSC 3049# | 0.75 | mg/kg | 26     | 37     | 45     | 5.2    | 130    |



20-20302,20-21040,20-21041,20-Our Ref 21312,20-21397,20-21491,20-21736 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No        | 1749537    | 1750159    | 1750643    | 1750644    | 1752052    |
|---------------|------------|------------|------------|------------|------------|
|               | MPA_AUK_BH | MPA_AUK_B  | MPA_AUK_BH | MPA_AUK_BH | MPA_AUK_BH |
| Sample ID     | 109        | H108       | 107        | 107        | 106        |
| Depth         | 8.00       | 5.50       | 6.00       | 8.00       | 5.10       |
| Other ID      | 10         | 5          | 5          | 8          | 5          |
| Sample Type   | SOIL       | ES         | SOIL       | SOIL       | ES         |
| Sampling Date | 20/10/2020 | 21/10/2020 | 22/10/2020 | 22/10/2020 | 26/10/2020 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        | n/s        |

|                          |             | Sampl | ing Time | n/s    | n/s    | n/s    | n/s    | n/s    |
|--------------------------|-------------|-------|----------|--------|--------|--------|--------|--------|
| Test                     | Method      | LOD   | Units    |        |        |        |        |        |
| Petroleum Hydrocarbons   | T           |       |          |        |        |        |        |        |
| Aliphatic C5-C6          | DETSC 3321* | 0.01  | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aliphatic C6-C8          | DETSC 3321* | 0.01  | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aliphatic C8-C10         | DETSC 3321* | 0.01  | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aliphatic C10-C12        | DETSC 3072# | 1.5   | mg/kg    | < 1.5  | < 1.5  | < 1.5  | < 1.5  | < 1.5  |
| Aliphatic C12-C16        | DETSC 3072# | 1.2   | mg/kg    | < 1.2  | < 1.2  | < 1.2  | < 1.2  | < 1.2  |
| Aliphatic C16-C21        | DETSC 3072# | 1.5   | mg/kg    | < 1.5  | < 1.5  | < 1.5  | < 1.5  | < 1.5  |
| Aliphatic C21-C35        | DETSC 3072# | 3.4   | mg/kg    | < 3.4  | < 3.4  | < 3.4  | < 3.4  | < 3.4  |
| Aliphatic C5-C35         | DETSC 3072* | 10    | mg/kg    | < 10   | < 10   | < 10   | < 10   | < 10   |
| Aromatic C5-C7           | DETSC 3321* | 0.01  | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aromatic C7-C8           | DETSC 3321* | 0.01  | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aromatic C8-C10          | DETSC 3321* | 0.01  | mg/kg    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Aromatic C10-C12         | DETSC 3072# | 0.9   | mg/kg    | < 0.9  | < 0.9  | < 0.9  | < 0.9  | < 0.9  |
| Aromatic C12-C16         | DETSC 3072# | 0.5   | mg/kg    | < 0.5  | < 0.5  | < 0.5  | < 0.5  | < 0.5  |
| Aromatic C16-C21         | DETSC 3072# | 0.6   | mg/kg    | < 0.6  | < 0.6  | < 0.6  | < 0.6  | < 0.6  |
| Aromatic C21-C35         | DETSC 3072# | 1.4   | mg/kg    | < 1.4  | < 1.4  | < 1.4  | < 1.4  | < 1.4  |
| Aromatic C5-C35          | DETSC 3072* | 10    | mg/kg    | < 10   | < 10   | < 10   | < 10   | < 10   |
| TPH Ali/Aro Total C5-C35 | DETSC 3072* | 10    | mg/kg    | < 10   | < 10   | < 10   | < 10   | < 10   |
| PAHs                     |             |       |          |        |        |        |        |        |
| Naphthalene              | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Acenaphthylene           | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Acenaphthene             | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Fluorene                 | DETSC 3303  | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Phenanthrene             | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Anthracene               | DETSC 3303  | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Fluoranthene             | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Pyrene                   | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Benzo(a)anthracene       | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Chrysene                 | DETSC 3303  | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Benzo(b)fluoranthene     | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Benzo(k)fluoranthene     | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Benzo(a)pyrene           | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Indeno(1,2,3-c,d)pyrene  | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Dibenzo(a,h)anthracene   | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| Benzo(g,h,i)perylene     | DETSC 3303# | 0.03  | mg/kg    | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| PAH - USEPA 16, Total    | DETSC 3303  | 0.1   | mg/kg    | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 |



20-20302,20-21040,20-21041,20-Our Ref 21312,20-21397,20-21491,20-21736 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No               | 1749537    | 1750159    | 9 1750643 175064 |            | 1752052    |
|----------------------|------------|------------|------------------|------------|------------|
|                      | MPA_AUK_BH | MPA_AUK_B  | MPA_AUK_BH       | MPA_AUK_BH | MPA_AUK_BH |
| Sample ID            | 109        | H108       | 107              | 107        | 106        |
| Depth                | 8.00       | 5.50       | 6.00             | 8.00       | 5.10       |
| Other ID             | 10         | 5          | 5                | 8          | 5          |
| Sample Type          | SOIL       | ES         | SOIL             | SOIL       | ES         |
| <b>Sampling Date</b> | 20/10/2020 | 21/10/2020 | 22/10/2020       | 22/10/2020 | 26/10/2020 |
| Sampling Time        | n/s        | n/s        | n/s              | n/s        | n/s        |

| Test                | Method      | LOD  | Units |       |       |          |       |       |
|---------------------|-------------|------|-------|-------|-------|----------|-------|-------|
| PCBs                |             |      |       |       |       |          |       |       |
| PCB 28 + PCB 31     | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01   |       |       |
| PCB 52              | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01   |       |       |
| PCB 101             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01   |       |       |
| PCB 118             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01   |       |       |
| PCB 153             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01   |       |       |
| PCB 138             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01   |       |       |
| PCB 180             | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01   |       |       |
| PCB 7 Total         | DETSC 3401# | 0.01 | mg/kg |       |       | < 0.01   |       |       |
| Phenols             |             | ·    |       |       | ·     | <u> </u> |       |       |
| Phenol - Monohydric | DETSC 2130# | 0.3  | mg/kg | < 0.3 | < 0.3 | < 0.3    | < 0.3 | < 0.3 |



# Summary of Chemical Analysis Soil VOC/SVOC Samples

20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-

Our Ref 21736 Client Ref 4291

Metal Processing Area Deep Soil

Contract Title and Groundwater Investigation

| Lab No        | 1748193    | 1749536    | 1750643    |  |
|---------------|------------|------------|------------|--|
|               | MPA_AUK_B  | MPA_AUK_BH | MPA_AUK_BH |  |
| Sample ID     | H102       | 109        | 107        |  |
| Depth         | 5.20       | 6.00       | 6.00       |  |
| Other ID      | 5          | 5          | 5          |  |
| Sample Type   | ES         | SOIL       | SOIL       |  |
| Sampling Date | 15/10/2020 | 20/10/2020 | 22/10/2020 |  |
| Sampling Time | n/s        | n/s        | n/s        |  |

Units Test Method LOD VOCs Vinyl Chloride **DETSC 3431** 0.01 mg/kg < 0.01 < 0.01 < 0.01 1,1 Dichloroethylene **DETSC 3431** 0.01 mg/kg < 0.01 < 0.01 < 0.01 < 0.01 Trans-1,2-dichloroethylene **DETSC 3431** 0.01 mg/kg < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 1,1-dichloroethane DETSC 3431 mg/kg 0.01 < 0.01 < 0.01 < 0.01 Cis-1,2-dichloroethylene **DETSC 3431** mg/kg 0.01 < 0.01 < 0.01 < 0.01 2,2-dichloropropane **DETSC 3431** mg/kg 0.01 mg/kg < 0.01 < 0.01 < 0.01 Bromochloromethane **DETSC 3431** mg/kg Chloroform **DETSC 3431** 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 1,1,1-trichloroethane mg/kg **DETSC 3431** < 0.01 1,1-dichloropropene **DETSC 3431** 0.01 mg/kg < 0.01 < 0.01 Carbon tetrachloride DETSC 3431 0.01 mg/kg < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Benzene **DETSC 3431** 0.01 mg/kg 1.2-dichloroethane < 0.01 < 0.01 < 0.01 **DETSC 3431** 0.01 mg/kg 0.01 < 0.01 < 0.01 < 0.01 Trichloroethylene **DETSC 3431** mg/kg 0.01 < 0.01 < 0.01 < 0.01 1,2-dichloropropane **DETSC 3431** mg/kg < 0.01 Dibromomethane 0.01 < 0.01 < 0.01 **DETSC 3431** mg/kg DETSC 3431 Bromodichloromethane 0.01 mg/kg < 0.01 < 0.01 < 0.01 cis-1,3-dichloropropene 0.01 mg/kg < 0.01 < 0.01 < 0.01 **DETSC 3431** mg/kg Toluene **DETSC 3431** 0.01 < 0.01 < 0.01 < 0.01 trans-1,3-dichloropropene 0.01 mg/kg < 0.01 < 0.01 < 0.01 **DETSC 3431** < 0.01 < 0.01 < 0.01 1,1,2-trichloroethane **DETSC 3431** 0.01 mg/kg Tetrachloroethylene **DETSC 3431** 0.01 mg/kg < 0.01 < 0.01 < 0.01 < 0.01 1,3-dichloropropane **DETSC 3431** 0.01 mg/kg < 0.01 < 0.01 mg/kg 0.01 < 0.01 < 0.01 Dibromochloromethane **DETSC 3431** 0.02 1,2-dibromoethane < 0.01 < 0.01 < 0.01 **DETSC 3431** 0.01 mg/kg Chlorobenzene 0.01 < 0.01 < 0.01 < 0.01 **DETSC 3431** mg/kg 0.01 1,1,1,2-tetrachloroethane < 0.01 < 0.01 < 0.01 **DETSC 3431** mg/kg mg/kg Ethylbenzene **DETSC 3431** 0.01 < 0.01 < 0.01 < 0.01 m+p-Xylene 0.01 < 0.01 < 0.01 < 0.01 **DETSC 3431** mg/kg mg/kg o-Xylene **DETSC 3431** 0.01 < 0.01 < 0.01 < 0.01 DETSC 3431\* Styrene 0.01 mg/kg < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 Bromoform **DETSC 3431** mg/kg Isopropylbenzene 0.01 mg/kg < 0.01 < 0.01 < 0.01 **DETSC 3431** Bromobenzene **DETSC 3431** 0.01 < 0.01 < 0.01 < 0.01 mg/kg 0.01 < 0.01 < 0.01 < 0.01 1,2,3-trichloropropane **DETSC 3431** mg/kg



# **Summary of Chemical Analysis Soil VOC/SVOC Samples**

20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-

Our Ref 21736 Client Ref 4291

Metal Processing Area Deep Soil

|                             | Lab No      |           |          |            | 1749536    |            |
|-----------------------------|-------------|-----------|----------|------------|------------|------------|
|                             | Cample ID   |           |          | MPA_AUK_BH |            |            |
|                             |             | Sample ID |          | H102       | 109        | 107        |
|                             |             | Depth     |          | 5.20       | 6.00       | 6.00       |
|                             |             |           | Other ID | 5          | 5          | 5          |
|                             |             |           | ple Type | ES         | SOIL       | SOIL       |
|                             |             | _         | ing Date | 15/10/2020 | 20/10/2020 | 22/10/2020 |
| Test                        | Method      | LOD       | Units    | n/s        | n/s        | n/s        |
| n-propylbenzene             | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 2-chlorotoluene             | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 1,3,5-trimethylbenzene      | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 4-chlorotoluene             | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| Tert-butylbenzene           | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 1,2,4-trimethylbenzene      | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| sec-butylbenzene            | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| p-isopropyltoluene          | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 1,3-dichlorobenzene         | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 1,4-dichlorobenzene         | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| n-butylbenzene              | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 1,2-dichlorobenzene         | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 1,2-dibromo-3-chloropropane | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 1,2,4-trichlorobenzene      | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| Hexachlorobutadiene         | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| 1,2,3-trichlorobenzene      | DETSC 3431  | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| MTBE                        | DETSC 3431* | 0.01      | mg/kg    | < 0.01     | < 0.01     | < 0.01     |
| SVOCs                       | 1           | l         | <u> </u> |            |            |            |
| Phenol                      | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| Aniline                     | DETSC 3433* | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 2-Chlorophenol              | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| Benzyl Alcohol              | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 2-Methylphenol              | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| Bis(2-chloroisopropyl)ether | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 3&4-Methylphenol            | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 2,4-Dimethylphenol          | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| Bis-(dichloroethoxy)methane | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 2,4-Dichlorophenol          | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 1,2,4-Trichlorobenzene      | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 4-Chloro-3-methylphenol     | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 2-Methylnaphthalene         | DETSC 3433  | 0.1       | mg/kg    | 0.5        | < 0.1      | < 0.1      |
| Hexachlorocyclopentadiene   | DETSC 3433* | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 2,4,6-Trichlorophenol       | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 2,4,5-Trichlorophenol       | DETSC 3433* | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |
| 2-Chloronaphthalene         | DETSC 3433  | 0.1       | mg/kg    | < 0.1      | < 0.1      | < 0.1      |



# **Summary of Chemical Analysis Soil VOC/SVOC Samples**

20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-

Our Ref 21736 Client Ref 4291

Metal Processing Area Deep Soil

| Lab No        | 1748193    | 1749536    | 1750643    |  |
|---------------|------------|------------|------------|--|
|               | MPA_AUK_B  | MPA_AUK_BH | MPA_AUK_BH |  |
| Sample ID     | H102       | 109        | 107        |  |
| Depth         | 5.20       | 6.00       | 6.00       |  |
| Other ID      | 5          | 5          | 5          |  |
| Sample Type   | ES         | SOIL       | SOIL       |  |
| Sampling Date | 15/10/2020 | 20/10/2020 | 22/10/2020 |  |
| Sampling Time | n/s        | n/s        | n/s        |  |
| LOD Units     |            | -          |            |  |

|                            | Sampling Time |     |       | n/s   | n/s   | n/s   |
|----------------------------|---------------|-----|-------|-------|-------|-------|
| Test                       | Method        | LOD | Units |       |       |       |
| 2-Nitroaniline             | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 2,4-Dinitrotoluene         | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 3-Nitroaniline             | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 4-Nitrophenol              | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Dibenzofuran               | DETSC 3433    | 0.1 | mg/kg | 1.3   | < 0.1 | < 0.1 |
| 2,6-Dinitrotoluene         | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 2,3,4,6-Tetrachlorophenol  | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Diethylphthalate           | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 4-Chlorophenylphenylether  | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 4-Nitroaniline             | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 2-Methyl-4,6-Dinitrophenol | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Diphenylamine              | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 4-Bromophenylphenylether   | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Hexachlorobenzene          | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Pentachlorophenol          | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Di-n-butylphthalate        | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Butylbenzylphthalate       | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Bis(2-ethylhexyl)phthalate | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Di-n-octylphthalate        | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 1,4-Dinitrobenzene         | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Dimethylphthalate          | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 1,3-Dinitrobenzene         | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 1,2-Dinitrobenzene         | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| 2,3,5,6-Tetrachlorophenol  | DETSC 3433*   | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Azobenzene                 | DETSC 3433    | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 |
| Carbazole                  | DETSC 3433*   | 0.1 | mg/kg | 0.8   | < 0.1 | < 0.1 |



# **Summary of Chemical Analysis Leachate Samples**

20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-

Our Ref 21736 Client Ref 4291

Metal Processing Area Deep Soil

| Lab No               | 1743678    | 1748194    | 1750645    | 1752053    |
|----------------------|------------|------------|------------|------------|
|                      | MPA_AUK_BH | MPA_AUK_B  | MPA_AUK_BH | MPA_AUK_BH |
| Sample ID            | 105        | H102       | 107        | 106        |
| Depth                | 5.00       | 5.20       | 6.00       | 5.10       |
| Other ID             | 5          | 5          | 5          | 5          |
| Sample Type          | ES         | ES         | LEACHATE   | ES         |
| <b>Sampling Date</b> | 09/10/2020 | 15/10/2020 | 22/10/2020 | 26/10/2020 |
| Sampling Time        | n/s        | n/s        | n/s        | n/s        |

| Test                      | Method      | LOD   | Units |        |        |       |       |
|---------------------------|-------------|-------|-------|--------|--------|-------|-------|
| Preparation               |             |       |       |        |        |       |       |
| Leachate 2:1 250g Non-WAC | DETSC 1009* |       |       | Υ      | Υ      | Υ     | Y     |
| Metals                    |             |       |       |        |        |       |       |
| Antimony, Dissolved       | DETSC 2306  | 0.17  | ug/l  | < 0.17 | < 0.17 | 0.72  | 0.33  |
| Arsenic, Dissolved        | DETSC 2306  | 0.16  | ug/l  | < 0.16 | < 0.16 | 0.75  | 0.52  |
| Barium, Dissolved         | DETSC 2306  | 0.26  | ug/l  | 24     | 1.1    | 75    | 40    |
| Beryllium, Dissolved      | DETSC 2306* | 0.1   | ug/l  | < 0.1  | < 0.1  | 0.1   | < 0.1 |
| Boron, Dissolved          | DETSC 2306* | 12    | ug/l  | 95     | < 12   | 170   | 47    |
| Cadmium, Dissolved        | DETSC 2306  | 0.03  | ug/l  | < 0.03 | < 0.03 | 0.21  | 0.09  |
| Chromium, Dissolved       | DETSC 2306  | 0.25  | ug/l  | < 0.25 | < 0.25 | 2.3   | 2.7   |
| Chromium, Hexavalent      | DETSC 2203  | 7     | ug/l  | < 7.0  | < 7.0  | < 7.0 | < 7.0 |
| Copper, Dissolved         | DETSC 2306  | 0.4   | ug/l  | 0.9    | 1.6    | 4.0   | 4.7   |
| Iron, Dissolved           | DETSC 2306  | 5.5   | ug/l  | < 5.5  | 8.6    | 21    | 53    |
| Lead, Dissolved           | DETSC 2306  | 0.09  | ug/l  | < 0.09 | < 0.09 | 1.7   | 0.58  |
| Magnesium, Dissolved      | DETSC 2306  | 0.02  | mg/l  | 0.27   | 0.09   | 0.56  | 0.77  |
| Manganese, Dissolved      | DETSC 2306  | 0.22  | ug/l  | 1.2    | 2.0    | 19    | 38    |
| Mercury, Dissolved        | DETSC 2306  | 0.01  | ug/l  | < 0.01 | < 0.01 | 0.02  | 0.02  |
| Molybdenum, Dissolved     | DETSC 2306  | 1.1   | ug/l  | < 1.1  | < 1.1  | 6.2   | 2.6   |
| Nickel, Dissolved         | DETSC 2306  | 0.5   | ug/l  | < 0.5  | < 0.5  | 2.1   | 1.3   |
| Vanadium, Dissolved       | DETSC 2306  | 0.6   | ug/l  | 0.9    | < 0.6  | 3.8   | 3.1   |
| Zinc, Dissolved           | DETSC 2306  | 1.3   | ug/l  | < 1.3  | < 1.3  | 3.1   | 240   |
| Inorganics                |             |       |       |        |        |       |       |
| рН                        | DETSC 2008  |       | рН    | 9.2    | 7.7    | 8.5   | 8.4   |
| Cyanide, Total            | DETSC 2130  | 40    | ug/l  | < 40   | < 40   | < 40  | < 40  |
| Ammoniacal Nitrogen as N  | DETSC 2207  | 0.015 | mg/l  | 0.020  | 0.040  | 0.060 | 0.033 |
| Chloride                  | DETSC 2055  | 0.1   | mg/l  | 7.8    | 3.5    | 11    | 37    |
| Sulphate as SO4           | DETSC 2055  | 0.1   | mg/l  | 73     | 180    | 54    | 160   |



20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-

Our Ref 21736 Client Ref 4291

Metal Processing Area Deep Soil

| Lab No        | 1743678    | 1748194    | 1750645    | 1752053    |
|---------------|------------|------------|------------|------------|
|               | MPA_AUK_BH | MPA_AUK_B  | MPA_AUK_BH | MPA_AUK_BH |
| Sample ID     | 105        | H102       | 107        | 106        |
| Depth         | 5.00       | 5.20       | 6.00       | 5.10       |
| Other ID      | 5          | 5          | 5          | 5          |
| Sample Type   | ES         | ES         | LEACHATE   | ES         |
| Sampling Date | 09/10/2020 | 15/10/2020 | 22/10/2020 | 26/10/2020 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        |

|                          |             | Sampi | ing rime[ | n/s    | n/s    | n/s    | n/s    |
|--------------------------|-------------|-------|-----------|--------|--------|--------|--------|
| Test                     | Method      | LOD   | Units     |        |        |        |        |
| Petroleum Hydrocarbons   |             |       |           |        |        |        |        |
| Aliphatic C5-C6          | DETSC 3322  | 0.1   | ug/l      | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aliphatic C6-C8          | DETSC 3322  | 0.1   | ug/l      | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aliphatic C8-C10         | DETSC 3322  | 0.1   | ug/l      | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aliphatic C10-C12        | DETSC 3072* | 1     | ug/l      | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aliphatic C12-C16        | DETSC 3072* | 1     | ug/l      | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aliphatic C16-C21        | DETSC 3072* | 1     | ug/l      | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aliphatic C21-C35        | DETSC 3072* | 1     | ug/l      | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aliphatic C5-C35         | DETSC 3072* | 10    | ug/l      | < 10   | < 10   | < 10   | < 10   |
| Aromatic C5-C7           | DETSC 3322  | 0.1   | ug/l      | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aromatic C7-C8           | DETSC 3322  | 0.1   | ug/l      | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aromatic C8-C10          | DETSC 3322  | 0.1   | ug/l      | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aromatic C10-C12         | DETSC 3072* | 1     | ug/l      | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aromatic C12-C16         | DETSC 3072* | 1     | ug/l      | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aromatic C16-C21         | DETSC 3072* | 1     | ug/l      | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aromatic C21-C35         | DETSC 3072* | 1     | ug/l      | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aromatic C5-C35          | DETSC 3072* | 10    | ug/l      | < 10   | < 10   | < 10   | < 10   |
| TPH Ali/Aro Total C5-C35 | DETSC 3072* | 10    | ug/l      | < 10   | < 10   | < 10   | < 10   |
| PAHs                     |             |       |           |        |        |        |        |
| Naphthalene              | DETSC 3304  | 0.05  | ug/l      | 0.12   | 0.05   | 0.26   | < 0.05 |
| Acenaphthylene           | DETSC 3304  | 0.01  | ug/l      | 0.05   | < 0.01 | < 0.01 | < 0.01 |
| Acenaphthene             | DETSC 3304  | 0.01  | ug/l      | 0.07   | < 0.01 | 0.01   | < 0.01 |
| Fluorene                 | DETSC 3304  | 0.01  | ug/l      | 0.40   | < 0.01 | < 0.01 | < 0.01 |
| Phenanthrene             | DETSC 3304  | 0.01  | ug/l      | 0.79   | 0.01   | 0.02   | 0.03   |
| Anthracene               | DETSC 3304  | 0.01  | ug/l      | 0.05   | < 0.01 | < 0.01 | < 0.01 |
| Fluoranthene             | DETSC 3304  | 0.01  | ug/l      | 0.02   | < 0.01 | < 0.01 | < 0.01 |
| Pyrene                   | DETSC 3304  | 0.01  | ug/l      | 0.07   | < 0.01 | < 0.01 | < 0.01 |
| Benzo(a)anthracene       | DETSC 3304  | 0.01  | ug/l      | 0.01   | < 0.01 | < 0.01 | < 0.01 |
| Chrysene                 | DETSC 3304  | 0.01  | ug/l      | 0.04   | < 0.01 | < 0.01 | < 0.01 |
| Benzo(b)fluoranthene     | DETSC 3304  | 0.01  | ug/l      | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Benzo(k)fluoranthene     | DETSC 3304  | 0.01  | ug/l      | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Benzo(a)pyrene           | DETSC 3304  | 0.01  | ug/l      | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Indeno(1,2,3-c,d)pyrene  | DETSC 3304  | 0.01  | ug/l      | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Dibenzo(a,h)anthracene   | DETSC 3304  | 0.01  | ug/l      | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| Benzo(g,h,i)perylene     | DETSC 3304  | 0.01  | ug/l      | < 0.01 | < 0.01 | < 0.01 | < 0.01 |



20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-

Our Ref 21736 Client Ref 4291

Metal Processing Area Deep Soil

|                     | Lab No     |        | 1743678  | 1748194    | 1750645    | 1752053    |            |
|---------------------|------------|--------|----------|------------|------------|------------|------------|
|                     | M          |        |          | MPA_AUK_BH | MPA_AUK_B  | MPA_AUK_BH | MPA_AUK_BH |
|                     |            | Sa     | ample ID | 105        | H102       | 107        | 106        |
|                     | Depth      |        |          | 5.00       | 5.20       | 6.00       | 5.10       |
|                     |            | (      | Other ID | 5          | 5          | 5          | 5          |
|                     |            | Sam    | ple Type | ES         | ES         | LEACHATE   | ES         |
|                     |            | Sampl  | ing Date | 09/10/2020 | 15/10/2020 | 22/10/2020 | 26/10/2020 |
|                     |            | Sampli | ing Time | n/s        | n/s        | n/s        | n/s        |
| Test                | Method     | LOD    | Units    |            |            |            | •          |
| PAH Total           | DETSC 3304 | 0.2    | ug/l     | 1.7        | < 0.20     | 0.36       | < 0.20     |
| Phenols             |            |        |          |            |            |            |            |
| Phenol - Monohydric | DETSC 2130 | 100    | ug/l     | < 100      | < 100      | < 100      | < 100      |



### **Summary of Asbestos Analysis Soil Samples**

Our Ref 20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-21736

Client Ref 4291

Contract Title Metal Processing Area Deep Soil and Groundwater Investigation

| Lab No  | Sample ID        | Sample Location       | Material Type | Result | Comment* | Analyst         |
|---------|------------------|-----------------------|---------------|--------|----------|-----------------|
| 1743676 | MPA_AUK_BH105 5  | MPA_AUK_BH105_SO_0500 | SOIL          | NAD    | none     | A Christodoulou |
|         | 5.00             |                       |               |        |          |                 |
| 1743677 | MPA_AUK_BH105 8  | MPA_AUK_BH105_SO_0850 | SOIL          | NAD    | none     | A Christodoulou |
|         | 8.50             |                       |               |        |          |                 |
| 1748193 | MPA_AUK_BH102 5  | MPA_AUK_BH102_SO_0520 | SOIL          | NAD    | none     | Lee Kerridge    |
|         | 5.20             |                       |               |        |          |                 |
| 1748195 | MPA_AUK_BH1015   | MPA_AUK_BH101_SO_0470 | SOIL          | NAD    | none     | Lee Kerridge    |
|         | 4.70             |                       |               |        |          |                 |
| 1749536 | MPA_AUK_BH109 5  | MPA_AUK_BH109_SO_0600 | SOIL          | NAD    | none     | Lee Kerridge    |
|         | 6.00             |                       |               |        |          |                 |
| 1749537 | MPA_AUK_BH109 10 | MPA_AUK_BH109_SO_0800 | SOIL          | NAD    | none     | Lee Kerridge    |
|         | 8.00             |                       |               |        |          |                 |
| 1750159 | MPA_AUK_BH108 5  | MPA_AUK_BH108_SO_0550 | SOIL          | NAD    | none     | D Wilkinson     |
|         | 5.50             |                       |               |        |          |                 |
| 1750643 | MPA_AUK_BH107 5  | MPA_AUK_BH107_SO_0600 | SOIL          | NAD    | none     | Steven Lambert  |
|         | 6.00             |                       |               |        |          |                 |
| 1750644 | MPA_AUK_BH107 8  | MPA_AUK_BH107_SO_0800 | SOIL          | NAD    | none     | Steven Lambert  |
|         | 8.00             |                       |               |        |          |                 |
| 1752052 | MPA_AUK_BH106 5  | MPA_AUK_BH106_SO_0510 | SOIL          | NAD    | none     | Lee Kerridge    |
|         | 5.10             |                       |               |        |          |                 |

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: \* -not included in laboratory scope of accreditation.



#### Information in Support of the Analytical Results

Our Ref 20-20302,20-21040,20-21041,20-21312,20-21397,20-21491,20-21736

Client Ref 4291

Contract Metal Processing Area Deep Soil and Groundwater Investigation

#### **Containers Received & Deviating Samples**

|         |                                |            | •                                 | Holding time | Inappropriate |
|---------|--------------------------------|------------|-----------------------------------|--------------|---------------|
|         |                                | Date       |                                   | exceeded for | container for |
| Lab No  | Sample ID                      | Sampled    | Containers Received               | tests        | tests         |
| 1743676 | MPA_AUK_BH105 5.00 SOIL        | . 09/10/20 | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1743677 | MPA_AUK_BH105 8.50 SOIL        | . 09/10/20 | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1743678 | MPA_AUK_BH105 5.00<br>LEACHATE | 09/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1748193 | MPA_AUK_BH102 5.20 SOIL        | 15/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1748194 | MPA_AUK_BH102 5.20<br>LEACHATE | 15/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1748195 | MPA_AUK_BH101 4.70 SOIL        | 19/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1749536 | MPA_AUK_BH109 6.00 SOIL        | 20/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1749537 | MPA_AUK_BH109 8.00 SOIL        | 20/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1750159 | MPA_AUK_BH108 5.50 SOIL        | 21/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1750643 | MPA_AUK_BH107 6.00 SOIL        | 22/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1750644 | MPA_AUK_BH107 8.00 SOIL        | 22/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1750645 | MPA_AUK_BH107 6.00<br>LEACHATE | 22/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1752052 | MPA_AUK_BH106 5.10 SOIL        | 26/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |
| 1752053 | MPA_AUK_BH106 5.10<br>LEACHATE | 26/10/20   | GJ 250ml x2, GJ 60ml x2, PT 1L x2 |              |               |

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

#### **Soil Analysis Notes**

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

#### **Disposal**

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months



### **Appendix A - Details of Analysis**

|                   |                                        |          | Limit of  | Sample      |                |      |        |
|-------------------|----------------------------------------|----------|-----------|-------------|----------------|------|--------|
| Method            | Parameter                              | Units    | Detection | Preparation | Sub-Contracted | UKAS | MCERTS |
| DETSC 2002        | Organic matter                         | %        | 0.1       | Air Dried   | No             | Yes  | Yes    |
| <b>DETSC 2003</b> | Loss on ignition                       | %        | 0.01      | Air Dried   | No             | Yes  | Yes    |
| DETSC 2008        | pH                                     | pH Units | 1         | Air Dried   | No             | Yes  | Yes    |
| <b>DETSC 2024</b> | Sulphide                               | mg/kg    | 10        | Air Dried   | No             | Yes  | Yes    |
| <b>DETSC 2076</b> | Sulphate Aqueous Extract as SO4        | mg/l     | 10        | Air Dried   | No             | Yes  | Yes    |
| DETSC 2084        | Total Carbon                           | %        | 0.5       | Air Dried   | No             | Yes  | Yes    |
| DETSC 2084        | Total Organic Carbon                   | %        | 0.5       | Air Dried   | No             | Yes  | Yes    |
| DETSC 2119        | Ammoniacal Nitrogen as N               | mg/kg    | 0.5       | Air Dried   | No             | Yes  | Yes    |
| DETSC 2130        | Cyanide free                           | mg/kg    | 0.1       | Air Dried   | No             | Yes  | Yes    |
| DETSC 2130        | Cyanide total                          | mg/kg    | 0.1       | Air Dried   | No             | Yes  | Yes    |
| DETSC 2130        | Phenol - Monohydric                    | mg/kg    | 0.3       | Air Dried   | No             | Yes  | Yes    |
| DETSC 2130        | Thiocyanate                            | mg/kg    | 0.6       | Air Dried   | No             | Yes  | Yes    |
| DETSC 2321        | Total Sulphate as SO4                  | %        | 0.01      | Air Dried   | No             | Yes  | Yes    |
| DETSC 2325        | Mercury                                | mg/kg    | 0.05      | Air Dried   | No             | Yes  | Yes    |
| <b>DETSC 3049</b> | Sulphur (free)                         | mg/kg    | 0.75      | Air Dried   | No             | Yes  | Yes    |
| DETSC2123         | Boron (water soluble)                  | mg/kg    | 0.2       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Arsenic                                | mg/kg    | 0.2       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Barium                                 | mg/kg    | 1.5       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Beryllium                              | mg/kg    | 0.2       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Cadmium Available                      | mg/kg    | 0.1       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Cadmium                                | mg/kg    | 0.1       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Cobalt                                 | mg/kg    | 0.7       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Chromium                               | mg/kg    | 0.15      | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Copper                                 | mg/kg    | 0.2       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Manganese                              | mg/kg    | 20        | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Molybdenum                             | mg/kg    | 0.4       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Nickel                                 | mg/kg    | 1         | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Lead                                   | mg/kg    | 0.3       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Selenium                               | mg/kg    | 0.5       | Air Dried   | No             | Yes  | Yes    |
| DETSC2301         | Zinc                                   | mg/kg    | 1         | Air Dried   | No             | Yes  | Yes    |
| DETSC 3072        | Ali/Aro C10-C35                        | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aliphatic C10-C12                      | mg/kg    | 1.5       | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aliphatic C10-C12                      | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aliphatic C10-C35                      | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aliphatic C12-C16                      | mg/kg    | 1.2       | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aliphatic C12-C16                      | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aliphatic C16-C21                      | mg/kg    | 1.5       | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aliphatic C16-C21                      | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aliphatic C21-C35                      | mg/kg    | 3.4       | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aliphatic C21-C35                      | mg/kg    | 3.4       | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aromatic C10-C12                       | mg/kg    | 0.9       | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aromatic C10-C12                       | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aromatic C10-C35                       | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aromatic C12-C16                       | mg/kg    | 0.5       | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aromatic C12-C16                       | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aromatic C16-C21                       | mg/kg    | 0.6       | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aromatic C16-C21                       | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aromatic C21-C35                       | mg/kg    | 1.4       | As Received | No             | Yes  | Yes    |
| DETSC 3072        | Aromatic C21-C35                       | mg/kg    | 1.4       | As Received | No             | Yes  | Yes    |
| DETS 062          | Benzene                                | mg/kg    | 0.01      | As Received | No             | Yes  | Yes    |
| <b>DETS 062</b>   | Ethylbenzene                           | mg/kg    | 0.01      | As Received | No             | Yes  | Yes    |
| DETS 062          | Toluene                                | mg/kg    | 0.01      | As Received | No             | Yes  | Yes    |
| DETS 062          | Xylene                                 | mg/kg    | 0.01      | As Received | No             | Yes  | Yes    |
| DETS 062          | m+p Xylene                             | mg/kg    | 0.01      | As Received | No             | Yes  | Yes    |
| DETS 062          | o Xylene                               | mg/kg    | 0.01      | As Received | No             | Yes  | Yes    |
| DETSC 3311        | C10-C24 Diesel Range Organics (DRO)    | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3311        | C24-C40 Lube Oil Range Organics (LORO) | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
| DETSC 3311        | EPH (C10-C40)                          | mg/kg    | 10        | As Received | No             | Yes  | Yes    |
|                   |                                        |          |           |             |                |      |        |

Limit of

Sample



### **Appendix A - Details of Analysis**

| • •        |                         | •     | Limit of  | Sample      |                |      |        |
|------------|-------------------------|-------|-----------|-------------|----------------|------|--------|
| Method     | Parameter               | Units | Detection | Preparation | Sub-Contracted | UKAS | MCERTS |
| DETSC 3303 | Acenaphthene            | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Acenaphthylene          | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Benzo(a)pyrene          | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Benzo(a)anthracene      | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Benzo(b)fluoranthene    | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Benzo(k)fluoranthene    | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Benzo(g,h,i)perylene    | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Dibenzo(a,h)anthracene  | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Fluoranthene            | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Indeno(1,2,3-c,d)pyrene | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Naphthalene             | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Phenanthrene            | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3303 | Pyrene                  | mg/kg | 0.03      | As Received | No             | Yes  | Yes    |
| DETSC 3401 | PCB 28 + PCB 31         | mg/kg | 0.01      | As Received | No             | Yes  | Yes    |
| DETSC 3401 | PCB 52                  | mg/kg | 0.01      | As Received | No             | Yes  | Yes    |
| DETSC 3401 | PCB 101                 | mg/kg | 0.01      | As Received | No             | Yes  | Yes    |
| DETSC 3401 | PCB 118                 | mg/kg | 0.01      | As Received | No             | Yes  | Yes    |
| DETSC 3401 | PCB 153                 | mg/kg | 0.01      | As Received | No             | Yes  | Yes    |
| DETSC 3401 | PCB 138                 | mg/kg | 0.01      | As Received | No             | Yes  | Yes    |
| DETSC 3401 | PCB 180                 | mg/kg | 0.01      | As Received | No             | Yes  | Yes    |
| DETSC 3401 | PCB Total               | mg/kg | 0.01      | As Received | No             | Yes  | Yes    |

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report



Certificate Number 20-22920

24-Nov-20

Client Allied Exploration & Geotechnics Limited

Unit 25

Stella Gill Industrial Estate

Pelton Fell DH2 2RG

Our Reference 20-22920

Client Reference 4291

Order No (not supplied)

Contract Title Metal Processing Area Deep Soil and Groundwater Investigation

Description 2 Water samples.

Date Received 12-Nov-20

Date Started 12-Nov-20

Date Completed 24-Nov-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager





Our Ref 20-22920 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No               | 1759822    | 1759823    |
|----------------------|------------|------------|
|                      | MPA_AUK_B  | MPA_AUK_B  |
| .Sample ID           | H101       | H108       |
| Depth                | 7.34       | 4.67       |
| Other ID             | 100        | 100        |
| Sample Type          | EW         | EW         |
| <b>Sampling Date</b> | 10/11/2020 | 10/11/2020 |
| Sampling Time        | n/s        | n/s        |

|                          |             | Janipi | ilig rillie[ | 11/5    | 11/5    |
|--------------------------|-------------|--------|--------------|---------|---------|
| Test                     | Method      | LOD    | Units        |         |         |
| Metals                   |             |        |              |         |         |
| Antimony, Dissolved      | DETSC 2306  | 0.17   | ug/l         | < 0.17  | < 0.17  |
| Arsenic, Dissolved       | DETSC 2306  | 0.16   | ug/l         | 1.1     | 1.8     |
| Barium, Dissolved        | DETSC 2306  | 0.26   | ug/l         | 55      | 28      |
| Boron, Dissolved         | DETSC 2306* | 12     | ug/l         | 1500    | 4500    |
| Cadmium, Dissolved       | DETSC 2306  | 0.03   | ug/l         | < 0.03  | < 0.03  |
| Calcium, Dissolved       | DETSC 2306  | 0.09   | mg/l         | 470     | 330     |
| Chromium, Dissolved      | DETSC 2306  | 0.25   | ug/l         | < 0.25  | 0.47    |
| Chromium, Hexavalent     | DETSC 2203  | 7      | ug/l         | < 7.0   | < 7.0   |
| Copper, Dissolved        | DETSC 2306  | 0.4    | ug/l         | < 0.4   | 0.9     |
| Iron, Dissolved          | DETSC 2306  | 5.5    | ug/l         | 38      | 19      |
| Lead, Dissolved          | DETSC 2306  | 0.09   | ug/l         | < 0.09  | < 0.09  |
| Magnesium, Dissolved     | DETSC 2306  | 0.02   | mg/l         | 8.3     | 4.3     |
| Manganese, Dissolved     | DETSC 2306  | 0.22   | ug/l         | 3.4     | 4.4     |
| Mercury, Dissolved       | DETSC 2306  | 0.01   | ug/l         | 0.04    | 0.02    |
| Molybdenum, Dissolved    | DETSC 2306  | 1.1    | ug/l         | 18      | 17      |
| Nickel, Dissolved        | DETSC 2306  | 0.5    | ug/l         | 1.3     | 2.8     |
| Sodium, Dissolved        | DETSC 2306  | 0.07   | mg/l         | 620     | 420     |
| Vanadium, Dissolved      | DETSC 2306  | 0.6    | ug/l         | 13      | 9.8     |
| Zinc, Dissolved          | DETSC 2306  | 1.3    | ug/l         | 1.8     | 2.5     |
| Inorganics               |             |        |              |         |         |
| рН                       | DETSC 2008  |        | рН           | 10.8    | 9.6     |
| Cyanide, Total           | DETSC 2130  | 40     | ug/l         | < 40    | < 40    |
| Cyanide, Free            | DETSC 2130  | 20     | ug/l         | < 20    | < 20    |
| Thiocyanate              | DETSC 2130  | 20     | ug/l         | < 20    | < 20    |
| Dissolved Organic Carbon | DETSC 2085  | 2      | mg/l         | 3.9     | 3.2     |
| Ammoniacal Nitrogen as N | DETSC 2207  | 0.015  | mg/l         | 0.34    | 0.046   |
| Chloride                 | DETSC 2055  | 0.1    | mg/l         | 640     | 480     |
| Nitrate as N             | *           | 0.1    | mg/l         | < 0.10  | 0.27    |
| Nitrite as N             | DETSC 2201  | 0.035  | mg/l         | < 0.035 | < 0.035 |
| Salinity (Calculated)    | DETSC 2017* | 0.01   | %            | 2.5     | 2.0     |
| Sulphate as SO4          | DETSC 2055  | 0.1    | mg/l         | 1300    | 1200    |
| Sulphur (free)           | DETSC 3049  | 84     | ug/l         | < 84    | < 84    |



Our Ref 20-22920 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No               | 1759822    | 1759823    |
|----------------------|------------|------------|
|                      | MPA_AUK_B  | MPA_AUK_B  |
| .Sample ID           | H101       | H108       |
| Depth                | 7.34       | 4.67       |
| Other ID             | 100        | 100        |
| Sample Type          | EW         | EW         |
| <b>Sampling Date</b> | 10/11/2020 | 10/11/2020 |
| Sampling Time        | n/s        | n/s        |
| LOD Units            |            |            |

|                          |             | Janipi | ng mne | n/s    | n/s    |
|--------------------------|-------------|--------|--------|--------|--------|
| Test                     | Method      | LOD    | Units  |        |        |
| Petroleum Hydrocarbons   |             |        |        |        |        |
| Aliphatic C5-C6          | DETSC 3322  | 0.1    | ug/l   | < 0.1  | < 0.1  |
| Aliphatic C6-C8          | DETSC 3322  | 0.1    | ug/l   | < 0.1  | < 0.1  |
| Aliphatic C8-C10         | DETSC 3322  | 0.1    | ug/l   | < 0.1  | < 0.1  |
| Aliphatic C10-C12        | DETSC 3072* | 1      | ug/l   | < 1.0  | < 1.0  |
| Aliphatic C12-C16        | DETSC 3072* | 1      | ug/l   | < 1.0  | < 1.0  |
| Aliphatic C16-C21        | DETSC 3072* | 1      | ug/l   | < 1.0  | < 1.0  |
| Aliphatic C21-C35        | DETSC 3072* | 1      | ug/l   | < 1.0  | < 1.0  |
| Aliphatic C5-C35         | DETSC 3072* | 10     | ug/l   | < 10   | < 10   |
| Aromatic C5-C7           | DETSC 3322  | 0.1    | ug/l   | < 0.1  | < 0.1  |
| Aromatic C7-C8           | DETSC 3322  | 0.1    | ug/l   | < 0.1  | < 0.1  |
| Aromatic C8-C10          | DETSC 3322  | 0.1    | ug/l   | < 0.1  | < 0.1  |
| Aromatic C10-C12         | DETSC 3072* | 1      | ug/l   | < 1.0  | < 1.0  |
| Aromatic C12-C16         | DETSC 3072* | 1      | ug/l   | < 1.0  | < 1.0  |
| Aromatic C16-C21         | DETSC 3072* | 1      | ug/l   | < 1.0  | < 1.0  |
| Aromatic C21-C35         | DETSC 3072* | 1      | ug/l   | < 1.0  | < 1.0  |
| Aromatic C5-C35          | DETSC 3072* | 10     | ug/l   | < 10   | < 10   |
| TPH Ali/Aro Total C5-C35 | DETSC 3072* | 10     | ug/l   | < 10   | < 10   |
| PAHs                     |             |        |        |        |        |
| Naphthalene              | DETSC 3304  | 0.05   | ug/l   | 0.07   | 0.06   |
| Acenaphthylene           | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| Acenaphthene             | DETSC 3304  | 0.01   | ug/l   | 0.02   | < 0.01 |
| Fluorene                 | DETSC 3304  | 0.01   | ug/l   | 0.01   | < 0.01 |
| Phenanthrene             | DETSC 3304  | 0.01   | ug/l   | 0.03   | < 0.01 |
| Anthracene               | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| Fluoranthene             | DETSC 3304  | 0.01   | ug/l   | 0.02   | < 0.01 |
| Pyrene                   | DETSC 3304  | 0.01   | ug/l   | 0.01   | < 0.01 |
| Benzo(a)anthracene       | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| Chrysene                 | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| Benzo(b)fluoranthene     | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| Benzo(k)fluoranthene     | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| Benzo(a)pyrene           | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| Indeno(1,2,3-c,d)pyrene  | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| Dibenzo(a,h)anthracene   | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| Benzo(g,h,i)perylene     | DETSC 3304  | 0.01   | ug/l   | < 0.01 | < 0.01 |
| PAH Total                | DETSC 3304  | 0.2    | ug/l   | < 0.20 | < 0.20 |
| Phenols                  |             |        |        |        |        |



Our Ref 20-22920 Client Ref 4291

Metal Processing Area Deep Soil and

|      |        |       | Lab No   | 1759822    | 1759823    |
|------|--------|-------|----------|------------|------------|
|      |        |       |          | MPA_AUK_B  | MPA_AUK_B  |
|      |        | .Sa   | ample ID | H101       | H108       |
|      |        |       | Depth    | 7.34       | 4.67       |
|      |        | (     | Other ID | 100        | 100        |
|      |        | Sam   | ple Type | EW         | EW         |
|      |        | Sampl | ing Date | 10/11/2020 | 10/11/2020 |
|      |        | Sampl | ing Time | n/s        | n/s        |
| Гest | Method | LOD   | Units    |            |            |
|      |        |       |          |            |            |

| rest                | Method     | LOD | Units |       |       |
|---------------------|------------|-----|-------|-------|-------|
| Phenol - Monohydric | DETSC 2130 | 100 | ug/l  | < 100 | < 100 |



Our Ref 20-22920 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No               | 1759822    | 1759823    |  |  |
|----------------------|------------|------------|--|--|
|                      | MPA_AUK_B  | MPA_AUK_B  |  |  |
| .Sample ID           | H101       | H108       |  |  |
| Depth                | 7.34       | 4.67       |  |  |
| Other ID             | 100        | 100        |  |  |
| Sample Type          | EW         | EW         |  |  |
| <b>Sampling Date</b> | 10/11/2020 | 10/11/2020 |  |  |
| Sampling Time        | n/s        | n/s        |  |  |

|                            |             | Sampling rime |       | n/s  | n/s  |
|----------------------------|-------------|---------------|-------|------|------|
| Test                       | Method      | LOD           | Units |      |      |
| VOCs                       |             |               |       |      |      |
| Dichlorodifluoromethane    | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Chloromethane              | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Vinyl Chloride             | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Bromomethane               | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Chloroethane               | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Trichlorofluoromethane     | DETSC 3432* | 1             | ug/l  | < 1  | < 1  |
| 1,1-dichloroethylene       | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Methylene Chloride         | DETSC 3432* | 27            | ug/l  | < 27 | < 27 |
| Trans-1,2-dichloroethylene | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| 1,1-dichloroethane         | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Cis-1,2-dichloroethylene   | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| 2,2-dichloropropane        | DETSC 3432  | 2             | ug/l  | < 2  | < 2  |
| Bromochloromethane         | DETSC 3432  | 4             | ug/l  | < 4  | < 4  |
| Chloroform                 | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| 1,1,1-trichloroethane      | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| 1,1-dichloropropene        | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Carbon tetrachloride       | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Benzene                    | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| 1,2-dichloroethane         | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Trichloroethylene          | DETSC 3432* | 1             | ug/l  | < 1  | < 1  |
| 1,2-dichloropropane        | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Dibromomethane             | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Bromodichloromethane       | DETSC 3432  | 4             | ug/l  | < 4  | < 4  |
| cis-1,3-dichloropropene    | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Toluene                    | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| trans-1,3-dichloropropene  | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| 1,1,2-trichloroethane      | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Tetrachloroethylene        | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| 1,3-dichloropropane        | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Dibromochloromethane       | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| 1,2-dibromoethane          | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Chlorobenzene              | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| 1,1,1,2-tetrachloroethane  | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| Ethylbenzene               | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
| m+p-Xylene                 | DETSC 3432  | 2             | ug/l  | < 2  | < 2  |
| o-Xylene                   | DETSC 3432  | 1             | ug/l  | < 1  | < 1  |
|                            |             |               |       |      |      |



Our Ref 20-22920 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No        | 1759822    | 1759823    |  |  |
|---------------|------------|------------|--|--|
|               | MPA_AUK_B  | MPA_AUK_B  |  |  |
| .Sample ID    | H101       | H108       |  |  |
| Depth         | 7.34       | 4.67       |  |  |
| Other ID      | 100        | 100        |  |  |
| Sample Type   | EW         | EW         |  |  |
| Sampling Date | 10/11/2020 | 10/11/2020 |  |  |
| Sampling Time | n/s        | n/s        |  |  |

|                                |             | Sampi | ing rime | n/s   | n/s   |
|--------------------------------|-------------|-------|----------|-------|-------|
| Test                           | Method      | LOD   | Units    |       |       |
| Styrene                        | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| Bromoform                      | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| Isopropylbenzene               | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 1,1,2,2-tetrachloroethane      | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| Bromobenzene                   | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 1,2,3-trichloropropane         | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| n-propylbenzene                | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 2-chlorotoluene                | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 1,3,5-trimethylbenzene         | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 4-chlorotoluene                | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| Tert-butylbenzene              | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 1,2,4-trimethylbenzene         | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| sec-butylbenzene               | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| p-isopropyltoluene             | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 1,3-dichlorobenzene            | DETSC 3432  | 2     | ug/l     | < 2   | < 2   |
| 1,4-dichlorobenzene            | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| n-butylbenzene                 | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 1,2-dichlorobenzene            | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 1,2-dibromo-3-chloropropane    | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 1,2,4-trichlorobenzene         | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| Hexachlorobutadiene            | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| 1,2,3-trichlorobenzene         | DETSC 3432  | 1     | ug/l     | < 1   | < 1   |
| MTBE                           | DETSC 3432* | 1     | ug/l     | < 1   | < 1   |
| SVOCs                          |             |       |          |       |       |
| Phenol                         | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| Aniline                        | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| 2-Chlorophenol                 | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| Benzyl Alcohol                 | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| 2-Methylphenol                 | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| Bis (2-chlorois opropyl) ether | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| 3&4-Methylphenol               | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| Bis(2-chloroethoxy)methane     | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| 2,4-Dimethylphenol             | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| 2,4-Dichlorophenol             | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| 1,2,4-Trichlorobenzene         | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| 4-Chloro-3-methylphenol        | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |
| 2-Methylnaphthalene            | DETSC 3434* | 1     | ug/l     | < 1.0 | < 1.0 |



Our Ref 20-22920 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No               | 1759822    | 1759823    |  |  |
|----------------------|------------|------------|--|--|
|                      | MPA_AUK_B  | MPA_AUK_B  |  |  |
| .Sample ID           | H101       | H108       |  |  |
| Depth                | 7.34       | 4.67       |  |  |
| Other ID             | 100        | 100        |  |  |
| Sample Type          | EW         | EW         |  |  |
| <b>Sampling Date</b> | 10/11/2020 | 10/11/2020 |  |  |
| Sampling Time        | n/s        | n/s        |  |  |

|                            |             | Sampling Time |       | n/s   | n/s   |
|----------------------------|-------------|---------------|-------|-------|-------|
| Test                       | Method      | LOD           | Units |       |       |
| Hexachlorocyclopentadiene  | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 2,4,6-Trichlorophenol      | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 2,4,5-Trichlorophenol      | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 2-Chloronaphthalene        | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 2-Nitroaniline             | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 2,4-Dinitrotoluene         | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 3-Nitroaniline             | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 4-Nitrophenol              | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Dibenzofuran               | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 2,6-Dinitrotoluene         | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 2,3,4,6-Tetrachlorophenol  | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Diethylphthalate           | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 4-Chlorophenylphenylether  | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 4-Nitroaniline             | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Diphenylamine              | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 4-Bromophenylphenylether   | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Hexachlorobenzene          | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Bis(2-ethylhexyl)ester     | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Pentachlorophenol          | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Di-n-butylphthalate        | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Butylbenzylphthalate       | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Bis(2-ethylhexyl)phthalate | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Di-n-octylphthalate        | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 1,4-Dinitrobenzene         | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Dimethylphthalate          | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 1,3-Dinitrobenzene         | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 2,3,5,6-Tetrachlorophenol  | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Azobenzene                 | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| Carbazole                  | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |
| 1-Methylnaphthalene        | DETSC 3434* | 1             | ug/l  | < 1.0 | < 1.0 |



### Information in Support of the Analytical Results

Our Ref 20-22920 Client Ref 4291

Contract Metal Processing Area Deep Soil and Groundwater Investigation

#### **Containers Received & Deviating Samples**

| Inappropriate container for |
|-----------------------------|
| ded for tests tests         |
|                             |
|                             |
|                             |

Kev: G-Glass P-Plastic B-Bottle V-Vial U-Tube

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

#### **Disposal**

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report



Certificate Number 20-23090

24-Nov-20

Client Allied Exploration & Geotechnics Limited

Unit 25

Stella Gill Industrial Estate

Pelton Fell DH2 2RG

Our Reference 20-23090

Client Reference 4291

Order No (not supplied)

Contract Title Metal Processing Area Deep Soil and Groundwater Investigation

Description 5 Water samples.

Date Received 13-Nov-20

Date Started 13-Nov-20

Date Completed 24-Nov-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager





Our Ref 20-23090 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No        | <b>Lab No</b> 1760950 |            | 1760952    | 1760953    | 1760954    |
|---------------|-----------------------|------------|------------|------------|------------|
|               | MPA_AUK_B             |            | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_B  |
| .Sample ID    | H104                  | H105       | H107       | H107       | H108       |
| Depth         |                       |            |            |            |            |
| Other ID      | 100                   | 100        | 100        | 100        | 100        |
| Sample Type   | EW                    | EW         | EW         | EW         | EW         |
| Sampling Date | 11/11/2020            | 11/11/2020 | 11/11/2020 | 11/11/2020 | 11/11/2020 |
| Sampling Time | n/s                   | n/s        | n/s        | n/s        | n/s        |

| Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |             | Janipi | ing mine | 11/5    | 11/5    | 11/5   | 11/5    | 11/3    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|--------|----------|---------|---------|--------|---------|---------|
| Antimony, Dissolved DETSC 2306 0.17 ug/l 0.32 < 0.17 < 0.17 0.22 0.28 Arsenic, Dissolved DETSC 2306 0.16 ug/l 0.79 0.44 0.43 0.60 1.2 Barium, Dissolved DETSC 2306 0.26 ug/l 63 35 44 68 51.2 Barium, Dissolved DETSC 2306 12 ug/l 300 830 450 520 1100 Cadmium, Dissolved DETSC 2306 0.03 ug/l < 0.03 0.04 0.03 < 0.03 < 0.03 Calcium, Dissolved DETSC 2306 0.09 mg/l 370 910 480 300 310 Calcium, Dissolved DETSC 2306 0.09 mg/l < 0.05 < 0.25 0.25 0.50 < 0.25 0.25 Chromium, Dissolved DETSC 2306 0.09 mg/l < 0.05 < 0.25 0.50 < 0.25 0.25 Chromium, Dissolved DETSC 2306 0.09 mg/l < 0.05 < 0.25 0.50 < 0.25 0.25 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test                     | Method      | LOD    | Units    |         |         |        |         |         |
| Arsenic, Dissolved DETSC 2306 0.16 ug/l 0.79 0.44 0.43 0.60 1.2 Barium, Dissolved DETSC 2306 0.26 ug/l 63 35 44 68 55 50 1100 Cadmium, Dissolved DETSC 2306 0.03 ug/l <0.03 0.04 0.03 <0.03 <0.03 <0.05 cadmium, Dissolved DETSC 2306 0.03 ug/l <0.03 0.04 0.03 <0.03 <0.05 cadmium, Dissolved DETSC 2306 0.09 mg/l 370 910 480 300 310 Chromium, Dissolved DETSC 2306 0.25 ug/l <0.25 <0.25 0.50 <0.25 <0.25 chromium, Dissolved DETSC 2306 0.25 ug/l <0.25 <0.25 0.50 <0.25 <0.25 chromium, Dissolved DETSC 2306 0.25 ug/l <0.04 <0.4 1.2 <0.4 <0.4 co.4 co.4 1.2 <0.4 <0.4 co.4 co.4 co.4 1.2 co.4 <0.4 co.4 co.4 co.4 co.4 co.4 co.4 co.4 co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metals                   |             |        |          |         |         |        |         |         |
| Detail Composition   Detail    | Antimony, Dissolved      | DETSC 2306  | 0.17   | ug/l     | 0.32    | < 0.17  | < 0.17 | 0.22    | 0.28    |
| Boron, Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arsenic, Dissolved       | DETSC 2306  | 0.16   | ug/l     | 0.79    | 0.44    | 0.43   | 0.60    | 1.2     |
| Cadmium, Dissolved         DETSC 2306         0.03         ug/l         < 0.03         0.04         0.03         < 0.03         < 0.03           Calcium, Dissolved         DETSC 2306         0.09         mg/l         370         910         480         300         316           Chromium, Dissolved         DETSC 2306         0.25         ug/l         < 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Barium, Dissolved        | DETSC 2306  | 0.26   | ug/l     | 63      | 35      | 44     | 68      | 51      |
| Calcium, Dissolved   DETSC 2306   0.09   mg/l   370   910   480   300   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310   310    | Boron, Dissolved         | DETSC 2306* | 12     | ug/l     | 300     | 830     | 450    | 520     | 1100    |
| Chromium, Dissolved   DETSC 2306   0.25   ug/l   < 0.25   < 0.25   0.50   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25   < 0.25     | Cadmium, Dissolved       | DETSC 2306  | 0.03   | ug/l     | < 0.03  | 0.04    | 0.03   | < 0.03  | < 0.03  |
| Chromium, Hexavalent   DETSC 2203   7   ug/l   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   < 7.0   | Calcium, Dissolved       | DETSC 2306  | 0.09   | mg/l     | 370     | 910     | 480    | 300     | 310     |
| DETSC 2306   D.4   Ug/l   C.0.4   C.   | Chromium, Dissolved      | DETSC 2306  | 0.25   | ug/l     | < 0.25  | < 0.25  | 0.50   | < 0.25  | < 0.25  |
| DETSC 2306   DETSC 2307   DETSC 2306   DETSC 2307   DETSC 2305   DETSC 2305   DETSC 2305   DETSC 2305   DETSC 2305   DET   | Chromium, Hexavalent     | DETSC 2203  | 7      | ug/l     | < 7.0   | < 7.0   | < 7.0  | < 7.0   | < 7.0   |
| DETSC 2306   DETSC 2306   D.09   ug/l   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.09   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   < 0.00   | Copper, Dissolved        | DETSC 2306  | 0.4    | ug/l     | < 0.4   | < 0.4   | 1.2    | < 0.4   | < 0.4   |
| Magnesium, Dissolved         DETSC 2306         0.02         mg/l         69         830         440         360         23           Manganese, Dissolved         DETSC 2306         0.22         ug/l         250         270         160         580         200           Mercury, Dissolved         DETSC 2306         0.01         ug/l         0.01         0.01         0.01         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Iron, Dissolved          | DETSC 2306  | 5.5    | ug/l     | 26      | 16      | 96     | 49      | 33      |
| Manganese, Dissolved         DETSC 2306         0.22         ug/l         250         270         160         580         200           Mercury, Dissolved         DETSC 2306         0.01         ug/l         0.01         0.01         0.01         0.02           Molybdenum, Dissolved         DETSC 2306         1.1         ug/l         29         9.3         13         13         33           Nickel, Dissolved         DETSC 2306         0.5         ug/l         0.9         1.8         1.7         1.9         1.8           Sodium, Dissolved         DETSC 2306         0.07         mg/l         2000         2900         2500         4300         610           Vanadium, Dissolved         DETSC 2306         0.6         ug/l         1.4         1.8         2.1         < 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lead, Dissolved          | DETSC 2306  | 0.09   | ug/l     | < 0.09  | < 0.09  | < 0.09 | < 0.09  | < 0.09  |
| Mercury, Dissolved DETSC 2306 0.01 ug/l 0.01 0.01 0.01 <0.01 0.02 Molybdenum, Dissolved DETSC 2306 1.1 ug/l 29 9.3 13 13 33 30 Nickel, Dissolved DETSC 2306 0.5 ug/l 0.9 1.8 1.7 1.9 1.8 Sodium, Dissolved DETSC 2306 0.07 mg/l 2000 2900 2500 4300 610 Molydandium, Dissolved DETSC 2306 0.6 ug/l 1.4 1.8 2.1 <0.6 2.5 Molydandium, Dissolved DETSC 2306 0.6 ug/l 1.4 1.8 2.1 <0.6 2.5 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved DETSC 2306 1.3 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved Notal DETSC 2308 20 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved Notal DETSC 2308 20 ug/l <1.3 3.5 3.6 <1.3 <1.3 Molydandium, Dissolved Notal DETSC 2308 20 ug/l <1.5 1.2 0.78 1.8 0.8 Molydandium, DETSC 2307 0.015 mg/l 1.5 1.2 0.78 1.8 0.8 Molydandium, DETSC 2301 0.035 mg/l <1.5 1.2 0.78 1.8 0.8 Molydandium, DETSC 2301 0.035 mg/l <1.5 0.10 <1.0 Molydandium, DETSC 2301 0.035 mg/l <1.0 Molydandium, DETSC 2301 0.035 mg/l <1.0 Molydandium, DETSC 2305 0.1 mg/l  | Magnesium, Dissolved     | DETSC 2306  | 0.02   | mg/l     | 69      | 830     | 440    | 360     | 23      |
| Molybdenum, Dissolved  DETSC 2306  DETSC 2307  DETSC 2 | Manganese, Dissolved     | DETSC 2306  | 0.22   | ug/l     | 250     | 270     | 160    | 580     | 200     |
| Nickel, Dissolved  DETSC 2306  DETSC 2308  DETSC 2308  DETSC 2308  DETSC 2330  | Mercury, Dissolved       | DETSC 2306  | 0.01   | ug/l     | 0.01    | 0.01    | 0.01   | < 0.01  | 0.02    |
| DETSC 2306   O.07   mg/l   2000   2900   2500   4300   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6100   6   | Molybdenum, Dissolved    | DETSC 2306  | 1.1    | ug/l     | 29      | 9.3     | 13     | 13      | 30      |
| Vanadium, Dissolved   DETSC 2306   0.6   ug/l   1.4   1.8   2.1   < 0.6   2.5     Zinc, Dissolved   DETSC 2306   1.3   ug/l   < 1.3   3.5   3.6   < 1.3   < 1.3     Zinc, Dissolved   DETSC 2306   1.3   ug/l   < 1.3   3.5   3.6   < 1.3   < 1.3     Zinc, Dissolved   DETSC 2306   1.3   ug/l   < 1.3   3.5   3.6   < 1.3   < 1.3     Zinc, Dissolved   DETSC 2306   1.3   ug/l   < 1.3   3.5   3.6   < 1.3   < 1.3     Zinc, Dissolved   DETSC 2306   1.3   ug/l   < 1.3   3.5   3.6   < 1.3   < 1.3     Zinc, Dissolved   DETSC 2308   DETSC 2308   DETSC 2308   DETSC 2309   DETSC 2309   DETSC 2309   Ug/l   < 40   < 40   < 40   < 40   < 40   < 40     Zinc, Dissolved   Carbon   DETSC 2309   DETSC 2309   DETSC 2309   Ug/l   4.4   < 2.0   < 2.0   3.1   4.0     Zinc, Dissolved   DETSC 2305   DISSOlved   DETSC 2301   DISSOlved   DETSC 2305   DISSOlved   DISSOlved   DETSC 2305   DISSOlved   DISSOlved   DETSC 2305   DISSOlved   DISSOlved   DETSC 2305   DISSOlved   DISS   | Nickel, Dissolved        | DETSC 2306  | 0.5    | ug/l     | 0.9     | 1.8     | 1.7    | 1.9     | 1.8     |
| DETSC 2306   1.3   ug/l   < 1.3   3.5   3.6   < 1.3   < 1.5     Inorganics   DETSC 2008   DETSC 2008   DETSC 2008   DETSC 2008   DETSC 2008   DETSC 2008   DETSC 2130   40   ug/l   < 40   < 40   < 40   < 40   < 40   < 40   < 40   < 40     Cyanide, Free   DETSC 2130   20   ug/l   < 20   < 20   < 20   < 20   < 20   < 20   < 20     Thiocyanate   DETSC 2130   20   ug/l   47   < 20   < 20   31   43     DETSC 2130   DETSC 2130   20   ug/l   47   < 20   < 20   31   43     DETSC 2085   2   mg/l   4.4   < 2.0   < 2.0   3.1   4.0     Ammoniacal Nitrogen as N   DETSC 2085   2   mg/l   1.5   1.2   0.78   1.8   0.83     Chloride   DETSC 2055   0.1   mg/l   1500   2500   1400   2600   460     Nitrate as N   PETSC 2017   0.035   mg/l   < 0.10   < 0.10   < 0.10   < 0.10     Salinity (Calculated)   DETSC 2017*   0.01   %   4.3   7.7   5.3   6.8   2.1     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   770     Sulphate as SO4   DETSC 2055   0.1   mg/l   920   1400   1500   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   100   | Sodium, Dissolved        | DETSC 2306  | 0.07   | mg/l     | 2000    | 2900    | 2500   | 4300    | 610     |
| DETSC 2008   DH   8.9   7.4   7.6   7.7   9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vanadium, Dissolved      | DETSC 2306  | 0.6    | ug/l     | 1.4     | 1.8     | 2.1    | < 0.6   | 2.5     |
| DETSC 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zinc, Dissolved          | DETSC 2306  | 1.3    | ug/l     | < 1.3   | 3.5     | 3.6    | < 1.3   | < 1.3   |
| Cyanide, Total         DETSC 2130         40         ug/l         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40         < 40 <td>Inorganics</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inorganics               |             |        |          |         |         |        |         |         |
| Cyanide, Free         DETSC 2130         20         ug/l         < 20         < 20         < 20         < 20           Thiocyanate         DETSC 2130         20         ug/l         47         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | рН                       | DETSC 2008  |        | рН       | 8.9     | 7.4     | 7.6    | 7.7     | 9.0     |
| Thiocyanate DETSC 2130 20 ug/l 47 <20 <20 31 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cyanide, Total           | DETSC 2130  | 40     | ug/l     | < 40    | < 40    | < 40   | < 40    | < 40    |
| Dissolved Organic Carbon   DETSC 2085   2 mg/l   4.4   < 2.0   < 2.0   3.1   4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cyanide, Free            | DETSC 2130  | 20     | ug/l     | < 20    | < 20    | < 20   | < 20    | < 20    |
| Ammoniacal Nitrogen as N DETSC 2207 0.015 mg/l 1.5 1.2 0.78 1.8 0.83 Chloride DETSC 2055 0.1 mg/l 1500 2500 1400 2600 460 Nitrate as N * 0.1 mg/l <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 Salinity (Calculated) DETSC 2017* 0.01 % 4.3 7.7 5.3 6.8 2.1 Sulphate as SO4 DETSC 2055 0.1 mg/l 920 1400 1500 1000 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thiocyanate              | DETSC 2130  | 20     | ug/l     | 47      | < 20    | < 20   | 31      | 43      |
| Chloride         DETSC 2055         0.1         mg/l         1500         2500         1400         2600         460           Nitrate as N         *         0.1         mg/l         < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dissolved Organic Carbon | DETSC 2085  | 2      | mg/l     | 4.4     | < 2.0   | < 2.0  | 3.1     | 4.0     |
| Nitrate as N         *         0.1         mg/l         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ammoniacal Nitrogen as N | DETSC 2207  | 0.015  | mg/l     | 1.5     | 1.2     | 0.78   | 1.8     | 0.83    |
| Nitrite as N DETSC 2201 0.035 mg/l < 0.035 < 0.035 0.068 < 0.035 < 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chloride                 | DETSC 2055  | 0.1    | mg/l     | 1500    | 2500    | 1400   | 2600    | 460     |
| Salinity (Calculated) DETSC 2017* 0.01 % 4.3 7.7 5.3 6.8 2.1<br>Sulphate as SO4 DETSC 2055 0.1 mg/l 920 1400 1500 1000 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nitrate as N             | *           | 0.1    | mg/l     | < 0.10  | < 0.10  | < 0.10 | < 0.10  | < 0.10  |
| Sulphate as SO4 DETSC 2055 0.1 mg/l 920 1400 1500 1000 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nitrite as N             | DETSC 2201  | 0.035  | mg/l     | < 0.035 | < 0.035 | 0.068  | < 0.035 | < 0.035 |
| 1 5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Salinity (Calculated)    | DETSC 2017* | 0.01   | %        | 4.3     | 7.7     | 5.3    | 6.8     | 2.1     |
| Sulphur (free) DETSC 3049 84 ug/l < 84 < 84 < 84 < 84 < 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sulphate as SO4          | DETSC 2055  | 0.1    | mg/l     | 920     | 1400    | 1500   | 1000    | 770     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sulphur (free)           | DETSC 3049  | 84     | ug/l     | < 84    | < 84    | < 84   | < 84    | < 84    |



Our Ref 20-23090 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No        | <b>Lab No</b> 1760950 |            | 1760952    | 1760953    | 1760954    |
|---------------|-----------------------|------------|------------|------------|------------|
|               | MPA_AUK_B             |            | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_B  |
| .Sample ID    | H104                  | H105       | H107       | H107       | H108       |
| Depth         |                       |            |            |            |            |
| Other ID      | 100                   | 100        | 100        | 100        | 100        |
| Sample Type   | EW                    | EW         | EW         | EW         | EW         |
| Sampling Date | 11/11/2020            | 11/11/2020 | 11/11/2020 | 11/11/2020 | 11/11/2020 |
| Sampling Time | n/s                   | n/s        | n/s        | n/s        | n/s        |

|                          |             | Sampli | ng Time | n/s    | n/s    | n/s    | n/s    | n/s    |
|--------------------------|-------------|--------|---------|--------|--------|--------|--------|--------|
| Test                     | Method      | LOD    | Units   |        |        |        |        |        |
| Petroleum Hydrocarbons   |             |        |         |        |        |        |        |        |
| Aliphatic C5-C6          | DETSC 3322  | 0.1    | ug/l    | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aliphatic C6-C8          | DETSC 3322  | 0.1    | ug/l    | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aliphatic C8-C10         | DETSC 3322  | 0.1    | ug/l    | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aliphatic C10-C12        | DETSC 3072* | 1      | ug/l    | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aliphatic C12-C16        | DETSC 3072* | 1      | ug/l    | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aliphatic C16-C21        | DETSC 3072* | 1      | ug/l    | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aliphatic C21-C35        | DETSC 3072* | 1      | ug/l    | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aliphatic C5-C35         | DETSC 3072* | 10     | ug/l    | < 10   | < 10   | < 10   | < 10   | < 10   |
| Aromatic C5-C7           | DETSC 3322  | 0.1    | ug/l    | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aromatic C7-C8           | DETSC 3322  | 0.1    | ug/l    | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aromatic C8-C10          | DETSC 3322  | 0.1    | ug/l    | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  |
| Aromatic C10-C12         | DETSC 3072* | 1      | ug/l    | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aromatic C12-C16         | DETSC 3072* | 1      | ug/l    | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aromatic C16-C21         | DETSC 3072* | 1      | ug/l    | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aromatic C21-C35         | DETSC 3072* | 1      | ug/l    | < 1.0  | < 1.0  | < 1.0  | < 1.0  | < 1.0  |
| Aromatic C5-C35          | DETSC 3072* | 10     | ug/l    | < 10   | < 10   | < 10   | < 10   | < 10   |
| TPH Ali/Aro Total C5-C35 | DETSC 3072* | 10     | ug/l    | < 10   | < 10   | < 10   | < 10   | < 10   |
| PAHs                     |             |        |         |        |        |        |        |        |
| Naphthalene              | DETSC 3304  | 0.05   | ug/l    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.07   |
| Acenaphthylene           | DETSC 3304  | 0.01   | ug/l    | < 0.01 | 0.03   | < 0.01 | < 0.01 | < 0.01 |
| Acenaphthene             | DETSC 3304  | 0.01   | ug/l    | < 0.01 | 0.01   | < 0.01 | < 0.01 | < 0.01 |
| Fluorene                 | DETSC 3304  | 0.01   | ug/l    | < 0.01 | 0.01   | < 0.01 | < 0.01 | < 0.01 |
| Phenanthrene             | DETSC 3304  | 0.01   | ug/l    | 0.02   | 0.09   | < 0.01 | < 0.01 | < 0.01 |
| Anthracene               | DETSC 3304  | 0.01   | ug/l    | < 0.01 | 0.02   | < 0.01 | < 0.01 | < 0.01 |
| Fluoranthene             | DETSC 3304  | 0.01   | ug/l    | 0.04   | 0.22   | < 0.01 | < 0.01 | < 0.01 |
| Pyrene                   | DETSC 3304  | 0.01   | ug/l    | 0.04   | 0.20   | < 0.01 | < 0.01 | < 0.01 |
| Benzo(a)anthracene       | DETSC 3304  | 0.01   | ug/l    | 0.01   | 0.08   | < 0.01 | < 0.01 | < 0.01 |
| Chrysene                 | DETSC 3304  | 0.01   | ug/l    | 0.01   | 0.09   | < 0.01 | < 0.01 | < 0.01 |
| Benzo(b)fluoranthene     | DETSC 3304  | 0.01   | ug/l    | 0.02   | 0.14   | < 0.01 | < 0.01 | < 0.01 |
| Benzo(k)fluoranthene     | DETSC 3304  | 0.01   | ug/l    | < 0.01 | 0.06   | < 0.01 | < 0.01 | < 0.01 |
| Benzo(a)pyrene           | DETSC 3304  | 0.01   | ug/l    | 0.01   | 0.09   | < 0.01 | < 0.01 | < 0.01 |
| Indeno(1,2,3-c,d)pyrene  | DETSC 3304  | 0.01   | ug/l    | 0.02   | 0.11   | < 0.01 | < 0.01 | < 0.01 |
| Dibenzo(a,h)anthracene   | DETSC 3304  | 0.01   | ug/l    | < 0.01 | 0.02   | < 0.01 | < 0.01 | < 0.01 |
| Benzo(g,h,i)perylene     | DETSC 3304  | 0.01   | ug/l    | 0.01   | 0.09   | < 0.01 | < 0.01 | < 0.01 |
| PAH Total                | DETSC 3304  | 0.2    | ug/l    | 0.23   | 1.3    | < 0.20 | < 0.20 | < 0.20 |
| Phenols                  |             |        | •       |        |        |        |        |        |



Our Ref 20-23090 Client Ref 4291

Metal Processing Area Deep Soil and

|                     |            |        | Lab No   | 1760950    | 1760951    | 1760952    | 1760953    | 1760954    |
|---------------------|------------|--------|----------|------------|------------|------------|------------|------------|
|                     |            |        |          | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_B  |
|                     |            | .Sa    | ample ID | H104       | H105       | H107       | H107       | H108       |
|                     |            |        | Depth    |            |            |            |            |            |
|                     |            | (      | Other ID | 100        | 100        | 100        | 100        | 100        |
|                     |            | Sam    | ple Type | EW         | EW         | EW         | EW         | EW         |
|                     |            | Sampl  | ing Date | 11/11/2020 | 11/11/2020 | 11/11/2020 | 11/11/2020 | 11/11/2020 |
|                     |            | Sampli | ing Time | n/s        | n/s        | n/s        | n/s        | n/s        |
| Test                | Method     | LOD    | Units    |            |            |            |            |            |
| Phenol - Monohydric | DETSC 2130 | 100    | ug/l     | 140        | 320        | 160        | 300        | < 100      |



Our Ref 20-23090 Client Ref 4291

Metal Processing Area Deep Soil and

| Lab No        | 1760950    | 1760951    | 1760952    | 1760953    | 1760954    |
|---------------|------------|------------|------------|------------|------------|
|               | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_B  | MPA_AUK_B  |
| .Sample ID    | H104       | H105       | H107       | H107       | H108       |
| Depth         |            |            |            |            |            |
| Other ID      | 100        | 100        | 100        | 100        | 100        |
| Sample Type   | EW         | EW         | EW         | EW         | EW         |
| Sampling Date | 11/11/2020 | 11/11/2020 | 11/11/2020 | 11/11/2020 | 11/11/2020 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        | n/s        |

| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |             | Samplin | ig i ime | n/s  | n/s  | n/s  | n/s | n/s  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|---------|----------|------|------|------|-----|------|
| Dichlorodifiluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test                     | Method      | LOD     | Units    |      |      |      |     |      |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VOCs                     |             |         |          |      |      |      |     |      |
| Vinyl Chloride         DETSC 3432         1         ug/l         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dichlorodifluoromethane  | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chloromethane            | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Chiloroethane   DETSC 3432   1   ug/l   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1     | Vinyl Chloride           | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Trichlorofluoromethane   DETSC 3432*   1   ug/l   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1   < 1 | Bromomethane             | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| 1,1-dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Methylene Chloride         DETSC 3432*         27         ug/l         < 27         < 27         < 27         < 27           Trans-1,2-dichloroethylene         DETSC 3432         1         ug/l         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trichlorofluoromethane   | DETSC 3432* | 1       | ug/l     |      | < 1  | < 1  | < 1 | < 1  |
| Trans-1,2-dichloroethylene         DETSC 3432         1         ug/l         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1 <th< td=""><td>1,1-dichloroethylene</td><td>DETSC 3432</td><td>1</td><td>ug/l</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1-dichloroethylene     | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| 1,1-dichloroethane         DETSC 3432         1         ug/l         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1 <td>Methylene Chloride</td> <td>DETSC 3432*</td> <td>27</td> <td>ug/l</td> <td>&lt; 27</td> <td>&lt; 27</td> <td>&lt; 27</td> <td>27</td> <td>&lt; 27</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methylene Chloride       | DETSC 3432* | 27      | ug/l     | < 27 | < 27 | < 27 | 27  | < 27 |
| Cis-1,2-dichloroethylene         DETSC 3432         1         ug/l         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                        | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| 2,2-dichloropropane         DETSC 3432         2         ug/l         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1-dichloroethane       | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cis-1,2-dichloroethylene | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Chloroform         DETSC 3432         1         ug/l         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •                      | DETSC 3432  |         | ug/l     |      | < 2  |      | < 2 | < 2  |
| 1,1,1-trichloroethane       DETSC 3432       1       ug/l       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | DETSC 3432  | 4       | ug/l     | < 4  | < 4  | < 4  | < 4 | < 4  |
| 1,1-dichloropropene         DETSC 3432         1         ug/l         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1 <td>Chloroform</td> <td>DETSC 3432</td> <td>1</td> <td>ug/l</td> <td>&lt; 1</td> <td>&lt; 1</td> <td>&lt; 1</td> <td>&lt; 1</td> <td>&lt; 1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chloroform               | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Carbon tetrachloride         DETSC 3432         1         ug/l         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1 </td <td>1,1,1-trichloroethane</td> <td>DETSC 3432</td> <td>1</td> <td>ug/l</td> <td>&lt; 1</td> <td>&lt; 1</td> <td>&lt; 1</td> <td>&lt; 1</td> <td>&lt; 1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1,1-trichloroethane    | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Benzene         DETSC 3432         1         ug/l         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1-dichloropropene      | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| 1,2-dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon tetrachloride     | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Trichloroethylene         DETSC 3432*         1         ug/l         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1 <td>Benzene</td> <td>DETSC 3432</td> <td>1</td> <td>ug/l</td> <td>&lt; 1</td> <td>&lt; 1</td> <td>&lt; 1</td> <td>&lt; 1</td> <td>&lt; 1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benzene                  | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| 1,2-dichloropropane       DETSC 3432       1       ug/l       <1       <1       <1       <1       <1         Dibromomethane       DETSC 3432       1       ug/l       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-dichloroethane       | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Dibromomethane         DETSC 3432         1         ug/l         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trichloroethylene        | DETSC 3432* | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Bromodichloromethane         DETSC 3432         4         ug/l         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4         <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 |      |
| cis-1,3-dichloropropene         DETSC 3432         1         ug/l         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Toluene DETSC 3432 1 ug/l <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromodichloromethane     | DETSC 3432  | 4       | ug/l     | < 4  | < 4  | < 4  | < 4 | < 4  |
| trans-1,3-dichloropropene         DETSC 3432         1         ug/l         <1         <1         <1         <1           1,1,2-trichloroethane         DETSC 3432         1         ug/l         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | DETSC 3432  |         |          | < 1  | < 1  | < 1  | < 1 | < 1  |
| 1,1,2-trichloroethane       DETSC 3432       1       ug/l       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Toluene                  | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Tetrachloroethylene         DETSC 3432         1         ug/l         <1         <1         <1         <1           1,3-dichloropropane         DETSC 3432         1         ug/l         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | DETSC 3432  | 1       |          |      | < 1  | < 1  | < 1 | < 1  |
| 1,3-dichloropropane       DETSC 3432       1       ug/l       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | DETSC 3432  | 1       |          |      | < 1  | < 1  | < 1 |      |
| Dibromochloromethane         DETSC 3432         1         ug/l         <1         <1         <1         <1           1,2-dibromoethane         DETSC 3432         1         ug/l         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | DETSC 3432  | 1       | ug/l     |      | < 1  | < 1  | < 1 |      |
| 1,2-dibromoethane       DETSC 3432       1       ug/l       <1       <1       <1       <1       <1       <1         Chlorobenzene       DETSC 3432       1       ug/l       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Chlorobenzene         DETSC 3432         1         ug/l         <1         <1         <1         <1           1,1,1,2-tetrachloroethane         DETSC 3432         1         ug/l         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | DETSC 3432  |         |          |      | < 1  | < 1  | < 1 | < 1  |
| 1,1,1,2-tetrachloroethane       DETSC 3432       1       ug/l       < 1       < 1       < 1       < 1         Ethylbenzene       DETSC 3432       1       ug/l       < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-dibromoethane        | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |
| Ethylbenzene         DETSC 3432         1         ug/l         <1         <1         <1         <1         <1           m+p-Xylene         DETSC 3432         2         ug/l         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chlorobenzene            | DETSC 3432  | 1       |          | < 1  | < 1  | < 1  | < 1 | < 1  |
| m+p-Xylene DETSC 3432 2 ug/l <2 <2 <2 <2 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | DETSC 3432  | 1       |          |      | < 1  | < 1  | < 1 | < 1  |
| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                 | DETSC 3432  |         | ug/l     |      |      |      |     | < 1  |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | DETSC 3432  |         |          | < 2  |      |      |     | < 2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o-Xylene                 | DETSC 3432  | 1       | ug/l     | < 1  | < 1  | < 1  | < 1 | < 1  |



Our Ref 20-23090 Client Ref 4291

Metal Processing Area Deep Soil and

| Contract Title Groundwater Inv | estigation / |          |                  |       |            | ,     |           |         |
|--------------------------------|--------------|----------|------------------|-------|------------|-------|-----------|---------|
|                                |              | L        | Lab No           |       | 1760951    |       | 1760953   | 1760954 |
|                                |              | C        | I- ID            |       |            |       | MPA_AUK_B |         |
|                                |              |          | nple ID<br>Depth | H104  | H105       | H107  | H107      | H108    |
|                                |              |          | ther ID          | 100   | 100        | 100   | 100       | 100     |
|                                |              | Sample   |                  | EW    | EW         | EW    | EW        | EW      |
|                                |              | Samplin  |                  |       | 11/11/2020 |       |           |         |
|                                |              | Sampling | _                |       | n/s        | n/s   | n/s       | n/s     |
| Test                           | Method       | LOD      | Units            |       | , -        | ,-    | , -       | , ,     |
| Styrene                        | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| Bromoform                      | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| Isopropylbenzene               | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 1,1,2,2-tetrachloroethane      | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| Bromobenzene                   | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 1,2,3-trichloropropane         | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| n-propylbenzene                | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 2-chlorotoluene                | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 1,3,5-trimethylbenzene         | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 4-chlorotoluene                | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| Tert-butylbenzene              | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 1,2,4-trimethylbenzene         | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| sec-butylbenzene               | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| p-isopropyltoluene             | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 1,3-dichlorobenzene            | DETSC 3432   | 2        | ug/l             | < 2   | < 2        | < 2   | < 2       | < 2     |
| 1,4-dichlorobenzene            | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| n-butylbenzene                 | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 1,2-dichlorobenzene            | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 1,2-dibromo-3-chloropropane    | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 1,2,4-trichlorobenzene         | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| Hexachlorobutadiene            | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| 1,2,3-trichlorobenzene         | DETSC 3432   | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| MTBE                           | DETSC 3432*  | 1        | ug/l             | < 1   | < 1        | < 1   | < 1       | < 1     |
| SVOCs                          |              |          |                  |       |            |       |           |         |
| Phenol                         | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| Aniline                        | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| 2-Chlorophenol                 | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| Benzyl Alcohol                 | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| 2-Methylphenol                 | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| Bis(2-chloroisopropyl)ether    | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| 3&4-Methylphenol               | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| Bis(2-chloroethoxy)methane     | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| 2,4-Dimethylphenol             | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| 2,4-Dichlorophenol             | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| 1,2,4-Trichlorobenzene         | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| 4-Chloro-3-methylphenol        | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |
| 2-Methylnaphthalene            | DETSC 3434*  | 1        | ug/l             | < 1.0 | < 1.0      | < 1.0 | < 1.0     | < 1.0   |



Our Ref 20-23090 Client Ref 4291

Metal Processing Area Deep Soil and

| Contract Title Groundwater Inves | tigation    |     |                    |         |            |            |            |            |
|----------------------------------|-------------|-----|--------------------|---------|------------|------------|------------|------------|
|                                  |             |     | Lab No             | 1760950 | 1760951    | 1760952    | 1760953    | 1760954    |
|                                  |             | _   |                    |         | MPA_AUK_B  |            |            |            |
|                                  |             | .Sa | mple ID            | H104    | H105       | H107       | H107       | H108       |
|                                  |             | ,   | Depth              | 100     | 100        | 100        | 100        | 100        |
|                                  |             |     | Other ID           | 100     | 100        | 100        | 100        | 100        |
|                                  |             | -   | ole Type           | EW      | EW         | EW         | EW         | EW         |
|                                  |             | _   | ng Date<br>ng Time |         | 11/11/2020 | 11/11/2020 | 11/11/2020 | 11/11/2020 |
| Test                             | Method      | LOD | Units              | n/s     | n/s        | n/s        | n/s        | n/s        |
| Hexachlorocyclopentadiene        | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 2,4,6-Trichlorophenol            | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 2,4,5-Trichlorophenol            | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 2-Chloronaphthalene              | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 2-Nitroaniline                   | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 2,4-Dinitrotoluene               | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 3-Nitroaniline                   | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 4-Nitrophenol                    | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Dibenzofuran                     | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 2,6-Dinitrotoluene               | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 2,3,4,6-Tetrachlorophenol        | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Diethylphthalate                 | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 4-Chlorophenylphenylether        | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 4-Nitroaniline                   | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Diphenylamine                    | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 4-Bromophenylphenylether         | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Hexachlorobenzene                | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Bis(2-ethylhexyl)ester           | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Pentachlorophenol                | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Di-n-butylphthalate              | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Butylbenzylphthalate             | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Bis(2-ethylhexyl)phthalate       | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Di-n-octylphthalate              | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 1,4-Dinitrobenzene               | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Dimethylphthalate                | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 1,3-Dinitrobenzene               | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 2,3,5,6-Tetrachlorophenol        | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Azobenzene                       | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Carbazole                        | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| 1-Methylnaphthalene              | DETSC 3434* | 1   | ug/l               | < 1.0   | < 1.0      | < 1.0      | < 1.0      | < 1.0      |



### Information in Support of the Analytical Results

Our Ref 20-23090 Client Ref 4291

Contract Metal Processing Area Deep Soil and Groundwater Investigation

#### **Containers Received & Deviating Samples**

|         |                            | Date     |                                  |                                 | Inappropriate container for |
|---------|----------------------------|----------|----------------------------------|---------------------------------|-----------------------------|
| Lab No  | Sample ID                  | Sampled  | <b>Containers Received</b>       | Holding time exceeded for tests | tests                       |
| 1760950 | MPA_AUK_BH104 WATER        | 11/11/20 | GB 1L x2, GV x2, PB 1L, P(other) | pH/Cond/TDS (1 days)            |                             |
| 1760951 | MPA_AUK_BH105 WATER        | 11/11/20 | GB 1L x2, GV x2, PB 1L, P(other) | pH/Cond/TDS (1 days)            |                             |
| 1760952 | MPA_AUK_BH107 WATER        | 11/11/20 | GB 1L x2, GV x2, PB 1L, P(other) | pH/Cond/TDS (1 days)            |                             |
| 1760953 | MPA_AUK_BH107 WATER        | 11/11/20 | GB 1L x2, GV x2, PB 1L, P(other) | pH/Cond/TDS (1 days)            |                             |
| 1760954 | MPA_AUK_BH108 WATER        | 11/11/20 | GB 1L x2, GV x2, PB 1L, P(other) | pH/Cond/TDS (1 days)            |                             |
| V C Cl  | - D DI+:- D D-++I- \/\/:-I |          |                                  |                                 |                             |

Kev: G-Glass P-Plastic B-Bottle V-Vial

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

#### **Disposal**

From the issue date of this test certificate, samples will be held for the following times prior to disposal :Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

**End of Report** 



Certificate Number 20-23332

24-Nov-20

Client Allied Exploration & Geotechnics Limited

Unit 25

Stella Gill Industrial Estate

Pelton Fell DH2 2RG

Our Reference 20-23332

Client Reference 4291

Order No 4291

Contract Title Former Redcar Steelworks - Metal Processing Area

Description 4 Water samples.

Date Received 17-Nov-20

Date Started 17-Nov-20

Date Completed 24-Nov-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager





Our Ref 20-23332 Client Ref 4291

Contract Title Former Redcar Steelworks - Metal Processing Area

| Lab No        | 1762069    | 1762070    | 1762071    | 1762072    |
|---------------|------------|------------|------------|------------|
|               | MPA_AUK_   | MPA_AUK_   | MPA_AUK_   | MPA_AUK_   |
| .Sample ID    | BH103D     | BH106D     | BH106S     | BH102      |
| Depth         |            |            |            |            |
| Other ID      | 100        | 100        | 100        | 100        |
| Sample Type   | EW         | EW         | EW         | EW         |
| Sampling Date | 12/11/2020 | 12/11/2020 | 12/11/2020 | 12/11/2020 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        |

|                          |             | Sampl | ing Time | n/s      | n/s     | n/s      | n/s     |
|--------------------------|-------------|-------|----------|----------|---------|----------|---------|
| Test                     | Method      | LOD   | Units    |          |         |          |         |
| Metals                   |             |       |          |          |         |          |         |
| Antimony, Dissolved      | DETSC 2306  | 0.17  | ug/l     | < 0.17   | 0.30    | 0.23     | < 0.17  |
| Arsenic, Dissolved       | DETSC 2306  | 0.16  | ug/l     | 1.2      | 0.99    | 0.99     | 0.38    |
| Barium, Dissolved        | DETSC 2306  | 0.26  | ug/l     | 25       | 46      | 41       | 48      |
| Boron, Dissolved         | DETSC 2306* | 12    | ug/l     | 2200     | 1900    | 1900     | 370     |
| Cadmium, Dissolved       | DETSC 2306  | 0.03  | ug/l     | < 0.03   | < 0.03  | < 0.03   | 0.10    |
| Calcium, Dissolved       | DETSC 2306  | 0.09  | mg/l     | 250      | 240     | 240      | 680     |
| Chromium, Dissolved      | DETSC 2306  | 0.25  | ug/l     | 0.43     | 5.5     | 0.41     | < 0.25  |
| Chromium, Hexavalent     | DETSC 2203  | 7     | ug/l     | < 7.0    | < 7.0   | < 7.0    | < 7.0   |
| Copper, Dissolved        | DETSC 2306  | 0.4   | ug/l     | 0.4      | 0.7     | < 0.4    | 0.6     |
| Iron, Dissolved          | DETSC 2306  | 5.5   | ug/l     | 20       | 1400    | 62       | 41      |
| Lead, Dissolved          | DETSC 2306  | 0.09  | ug/l     | < 0.09   | 1.4     | < 0.09   | 0.22    |
| Magnesium, Dissolved     | DETSC 2306  | 0.02  | mg/l     | 62       | 87      | 92       | 1000    |
| Manganese, Dissolved     | DETSC 2306  | 0.22  | ug/l     | 51       | 380     | 270      | 1200    |
| Mercury, Dissolved       | DETSC 2306  | 0.01  | ug/l     | < 0.01   | < 0.01  | 0.01     | < 0.01  |
| Molybdenum, Dissolved    | DETSC 2306  | 1.1   | ug/l     | 8.9      | 8.8     | 8.7      | 2.2     |
| Nickel, Dissolved        | DETSC 2306  | 0.5   | ug/l     | 6.7      | 4.8     | 4.4      | 3.9     |
| Sodium, Dissolved        | DETSC 2306  | 0.07  | mg/l     | 460      | 490     | 520      | 3100    |
| Vanadium, Dissolved      | DETSC 2306  | 0.6   | ug/l     | 2.1      | 3.0     | 0.9      | 2.3     |
| Zinc, Dissolved          | DETSC 2306  | 1.3   | ug/l     | < 1.3    | 4.3     | < 1.3    | 3.9     |
| Inorganics               | •           |       |          | <u>'</u> |         | <u>'</u> |         |
| рН                       | DETSC 2008  |       | рН       | 8.9      | 8.8     | 8.7      | 7.4     |
| Cyanide, Total           | DETSC 2130  | 40    | ug/l     | < 40     | < 40    | < 40     | < 40    |
| Cyanide, Free            | DETSC 2130  | 20    | ug/l     | < 20     | < 20    | < 20     | < 20    |
| Thiocyanate              | DETSC 2130  | 20    | ug/l     | < 20     | < 20    | < 20     | < 20    |
| Dissolved Organic Carbon | DETSC 2085  | 2     | mg/l     | 9.3      | 5.9     | 23       | < 2.0   |
| Ammoniacal Nitrogen as N | DETSC 2207  | 0.015 | mg/l     | 0.055    | 0.38    | 0.35     | 1.9     |
| Chloride                 | DETSC 2055  | 0.1   | mg/l     | 350      | 350     | 330      | 4000    |
| Nitrate as N             | *           | 0.1   | mg/l     | 0.32     | 0.23    | 0.22     | 0.22    |
| Nitrite as N             | DETSC 2201  | 0.035 | mg/l     | < 0.035  | < 0.035 | < 0.035  | < 0.035 |
| Salinity (Calculated)    | DETSC 2017* | 0.01  | %        | 1.8      | 1.8     | 1.8      | 7.3     |
| Sulphate as SO4          | DETSC 2055  | 0.1   | mg/l     | 1000     | 1100    | 780      | 1400    |
| Sulphur (free)           | DETSC 3049  | 84    | ug/l     | < 84     | < 84    | < 84     | < 84    |
| Petroleum Hydrocarbons   |             |       | <u> </u> |          |         |          |         |
| Aliphatic C5-C6          | DETSC 3322  | 0.1   | ug/l     | < 0.1    | < 0.1   | < 0.1    | < 0.1   |
| Aliphatic C6-C8          | DETSC 3322  | 0.1   | ug/l     | < 0.1    | < 0.1   | < 0.1    | < 0.1   |
| Aliphatic C8-C10         | DETSC 3322  | 0.1   | ug/l     | < 0.1    | < 0.1   | < 0.1    | < 0.1   |
| Aliphatic C10-C12        | DETSC 3072* | 1     | ug/l     | < 1.0    | < 1.0   | < 1.0    | < 1.0   |
| Aliphatic C12-C16        | DETSC 3072* | 1     |          | < 1.0    | < 1.0   | < 1.0    | < 1.0   |
| <u> </u>                 |             |       | ug/l     |          |         |          |         |
| Aliphatic C16-C21        | DETSC 3072* | 1     | ug/l     | < 1.0    | < 1.0   | < 1.0    | < 1.0   |
| Aliphatic C21-C35        | DETSC 3072* | 1     | ug/l     | < 1.0    | < 1.0   | < 1.0    | < 1.0   |
| Aliphatic C5-C35         | DETSC 3072* | 10    | ug/l     | < 10     | < 10    | < 10     | < 10    |
| Aromatic C5-C7           | DETSC 3322  | 0.1   | ug/l     | < 0.1    | < 0.1   | < 0.1    | < 0.1   |



Our Ref 20-23332 Client Ref 4291

| Contract Title Former Redcar Stee | lworks - Metal | Process | ing Area          |            |          |          |          |
|-----------------------------------|----------------|---------|-------------------|------------|----------|----------|----------|
|                                   |                |         | Lab No            |            |          |          | 1762072  |
|                                   |                | c.      | amala ID          | MPA_AUK_   | MPA_AUK_ | MPA_AUK_ | MPA_AUK_ |
|                                   |                | .5      | ample ID<br>Depth | BH103D     | BH106D   | BH106S   | BH102    |
|                                   |                |         | Other ID          | 100        | 100      | 100      | 100      |
|                                   |                |         | ple Type          | EW         | EW       | EW       | EW       |
|                                   |                |         |                   | 12/11/2020 |          |          |          |
|                                   |                | -       | ing Time          |            | n/s      | n/s      | n/s      |
| Test                              | Method         | LOD     | Units             | .,,,       | .,,,     | .,,,     | , -      |
| Aromatic C7-C8                    | DETSC 3322     | 0.1     | ug/l              | < 0.1      | < 0.1    | < 0.1    | < 0.1    |
| Aromatic C8-C10                   | DETSC 3322     | 0.1     | ug/l              | < 0.1      | < 0.1    | < 0.1    | < 0.1    |
| Aromatic C10-C12                  | DETSC 3072*    | 1       | ug/l              | < 1.0      | < 1.0    | < 1.0    | < 1.0    |
| Aromatic C12-C16                  | DETSC 3072*    | 1       | ug/l              | < 1.0      | < 1.0    | < 1.0    | < 1.0    |
| Aromatic C16-C21                  | DETSC 3072*    | 1       | ug/l              | < 1.0      | < 1.0    | < 1.0    | < 1.0    |
| Aromatic C21-C35                  | DETSC 3072*    | 1       | ug/l              | < 1.0      | < 1.0    | < 1.0    | < 1.0    |
| Aromatic C5-C35                   | DETSC 3072*    | 10      | ug/l              | < 10       | < 10     | < 10     | < 10     |
| TPH Ali/Aro Total C5-C35          | DETSC 3072*    | 10      | ug/l              | < 10       | < 10     | < 10     | < 10     |
| PAHs                              | •              | '       |                   |            |          |          |          |
| Naphthalene                       | DETSC 3304     | 0.05    | ug/l              | 0.05       | 0.06     | 0.13     | < 0.05   |
| Acenaphthylene                    | DETSC 3304     | 0.01    | ug/l              | < 0.01     | 0.02     | < 0.01   | < 0.01   |
| Acenaphthene                      | DETSC 3304     | 0.01    | ug/l              | < 0.01     | 0.03     | 0.05     | < 0.01   |
| Fluorene                          | DETSC 3304     | 0.01    | ug/l              | < 0.01     | 0.03     | 0.02     | < 0.01   |
| Phenanthrene                      | DETSC 3304     | 0.01    | ug/l              | 0.01       | 0.02     | 0.02     | < 0.01   |
| Anthracene                        | DETSC 3304     | 0.01    | ug/l              | 0.02       | 0.03     | 0.02     | < 0.01   |
| Fluoranthene                      | DETSC 3304     | 0.01    | ug/l              | 0.01       | 0.05     | 0.02     | < 0.01   |
| Pyrene                            | DETSC 3304     | 0.01    | ug/l              | 0.01       | 0.04     | 0.02     | 0.01     |
| Benzo(a)anthracene                | DETSC 3304     | 0.01    | ug/l              | 0.01       | 0.01     | 0.01     | < 0.01   |
| Chrysene                          | DETSC 3304     | 0.01    | ug/l              | 0.02       | 0.02     | < 0.01   | < 0.01   |
| Benzo(b)fluoranthene              | DETSC 3304     | 0.01    | ug/l              | 0.01       | 0.01     | < 0.01   | < 0.01   |
| Benzo(k)fluoranthene              | DETSC 3304     | 0.01    | ug/l              | 0.01       | < 0.01   | < 0.01   | < 0.01   |
| Benzo(a)pyrene                    | DETSC 3304     | 0.01    | ug/l              | 0.01       | < 0.01   | < 0.01   | < 0.01   |
| Indeno(1,2,3-c,d)pyrene           | DETSC 3304     | 0.01    | ug/l              | 0.01       | < 0.01   | < 0.01   | < 0.01   |
| Dibenzo(a,h)anthracene            | DETSC 3304     | 0.01    | ug/l              | 0.01       | < 0.01   | < 0.01   | < 0.01   |
| Benzo(g,h,i)perylene              | DETSC 3304     | 0.01    | ug/l              | 0.01       | < 0.01   | < 0.01   | < 0.01   |
| PAH Total                         | DETSC 3304     | 0.2     | ug/l              | 0.24       | 0.35     | 0.34     | < 0.20   |
| Phenols                           |                | '       |                   |            |          |          |          |
| Phenol - Monohydric               | DETSC 2130     | 100     | ug/l              | < 100      | < 100    | < 100    | 680      |



Our Ref 20-23332 Client Ref 4291

Contract Title Former Redcar Steelworks - Metal Processing Area

| Lab No        | 1762069    | 1762070    | 1762071    | 1762072    |
|---------------|------------|------------|------------|------------|
| _             | MPA_AUK_   | MPA_AUK_   | MPA_AUK_   | MPA_AUK_   |
| .Sample ID    | BH103D     | BH106D     | BH106S     | BH102      |
| Depth         |            |            |            |            |
| Other ID      | 100        | 100        | 100        | 100        |
| Sample Type   | EW         | EW         | EW         | EW         |
| Sampling Date | 12/11/2020 | 12/11/2020 | 12/11/2020 | 12/11/2020 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        |

|                            |             | Sampii | ng rime | n/s  | n/s  | n/s  | n/s  |
|----------------------------|-------------|--------|---------|------|------|------|------|
| Test                       | Method      | LOD    | Units   |      |      |      |      |
| VOCs                       |             |        |         |      |      |      |      |
| Dichlorodifluoromethane    | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Chloromethane              | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Vinyl Chloride             | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Bromomethane               | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Chloroethane               | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Trichlorofluoromethane     | DETSC 3432* | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,1-dichloroethylene       | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Methylene Chloride         | DETSC 3432* | 27     | ug/l    | < 27 | < 27 | < 27 | < 27 |
| Trans-1,2-dichloroethylene | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,1-dichloroethane         | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Cis-1,2-dichloroethylene   | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 2,2-dichloropropane        | DETSC 3432  | 2      | ug/l    | < 2  | < 2  | < 2  | < 2  |
| Bromochloromethane         | DETSC 3432  | 4      | ug/l    | < 4  | < 4  | < 4  | < 4  |
| Chloroform                 | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,1,1-trichloroethane      | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,1-dichloropropene        | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Carbon tetrachloride       | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Benzene                    | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,2-dichloroethane         | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Trichloroethylene          | DETSC 3432* | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,2-dichloropropane        | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Dibromomethane             | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Bromodichloromethane       | DETSC 3432  | 4      | ug/l    | < 4  | < 4  | < 4  | < 4  |
| cis-1,3-dichloropropene    | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Toluene                    | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| trans-1,3-dichloropropene  | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,1,2-trichloroethane      | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Tetrachloroethylene        | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,3-dichloropropane        | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Dibromochloromethane       | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,2-dibromoethane          | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Chlorobenzene              | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| 1,1,1,2-tetrachloroethane  | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Ethylbenzene               | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| m+p-Xylene                 | DETSC 3432  | 2      | ug/l    | < 2  | < 2  | < 2  | < 2  |
| o-Xylene                   | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Styrene                    | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Bromoform                  | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |
| Isopropylbenzene           | DETSC 3432  | 1      | ug/l    | < 1  | < 1  | < 1  | < 1  |



Our Ref 20-23332 Client Ref 4291

Contract Title Former Redcar Steelworks - Metal Processing Area

| Contract Title Former Redcar Ste | eelworks - Metal | Process  | _        |                    |                    |                    |                   |
|----------------------------------|------------------|----------|----------|--------------------|--------------------|--------------------|-------------------|
|                                  |                  |          | Lab No   |                    | 1762070            |                    | 1762072           |
|                                  |                  | .Sa      | mple ID  | MPA_AUK_<br>BH103D | MPA_AUK_<br>BH106D | MPA_AUK_<br>BH106S | MPA_AUK_<br>BH102 |
|                                  |                  |          | Depth    | 5.12005            | DITTOOD            | D111003            | DITIOZ            |
|                                  |                  |          | Other ID | 100                | 100                | 100                | 100               |
|                                  |                  | Sam      | ple Type | EW                 | EW                 | EW                 | EW                |
|                                  |                  | Sampl    | ing Date | 12/11/2020         | 12/11/2020         | 12/11/2020         | 12/11/2020        |
|                                  |                  | _        | ng Time  | n/s                | n/s                | n/s                | n/s               |
| Test                             | Method           | LOD      | Units    |                    |                    |                    |                   |
| 1,1,2,2-tetrachloroethane        | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| Bromobenzene                     | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 1,2,3-trichloropropane           | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| n-propylbenzene                  | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 2-chlorotoluene                  | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 1,3,5-trimethylbenzene           | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 4-chlorotoluene                  | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| Tert-butylbenzene                | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 1,2,4-trimethylbenzene           | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| sec-butylbenzene                 | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| p-isopropyltoluene               | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 1,3-dichlorobenzene              | DETSC 3432       | 2        | ug/l     | < 2                | < 2                | < 2                | < 2               |
| 1,4-dichlorobenzene              | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| n-butylbenzene                   | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 1,2-dichlorobenzene              | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 1,2-dibromo-3-chloropropane      | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 1,2,4-trichlorobenzene           | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| Hexachlorobutadiene              | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| 1,2,3-trichlorobenzene           | DETSC 3432       | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| MTBE                             | DETSC 3432*      | 1        | ug/l     | < 1                | < 1                | < 1                | < 1               |
| SVOCs                            | •                | <u>'</u> |          | •                  |                    |                    |                   |
| Phenol                           | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| Aniline                          | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2-Chlorophenol                   | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| Benzyl Alcohol                   | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2-Methylphenol                   | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| Bis(2-chloroisopropyl)ether      | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 3&4-Methylphenol                 | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| Bis(2-chloroethoxy)methane       | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2,4-Dimethylphenol               | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2,4-Dichlorophenol               | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 1,2,4-Trichlorobenzene           | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 4-Chloro-3-methylphenol          | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2-Methylnaphthalene              | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| Hexachlorocyclopentadiene        | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2,4,6-Trichlorophenol            | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2,4,5-Trichlorophenol            | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2-Chloronaphthalene              | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2-Nitroaniline                   | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| 2,4-Dinitrotoluene               | DETSC 3434*      | 1        | ug/l     | < 1.0              | < 1.0              | < 1.0              | < 1.0             |
| Z, T DITILI OLUIUCHE             | DE13C 3434       | 1        | ug/I     | \ 1.U              | \ <u>1.</u> 0      | \ 1.U              | × 1.0             |



Our Ref 20-23332 Client Ref 4291

| Contract Title Former Redcar Stee | lworks - Metal | Process | ing Area          |            |           |                   |               |
|-----------------------------------|----------------|---------|-------------------|------------|-----------|-------------------|---------------|
|                                   |                |         | Lab No            | 1762069    | 1762070   |                   | 1762072       |
|                                   |                | C.      | I- ID             | MPA_AUK_   | MPA_AUK_  | MPA_AUK_          | MPA_AUK_      |
|                                   |                | .5      | ample ID          | BH103D     | BH106D    | BH106S            | BH102         |
|                                   |                |         | Depth<br>Other ID | 400        | 400       | 400               | 100           |
|                                   |                |         | ple Type          | 100<br>EW  | 100<br>EW | 100               | 100           |
|                                   |                |         |                   | 12/11/2020 |           | EW 12/11/2020     | EW 12/11/2020 |
|                                   |                | -       | ing Time          |            | n/s       | 12/11/2020<br>n/s | n/s           |
| Test                              | Method         | LOD     | Units             | 11/3       | 11/3      | 11/3              | 11/3          |
| 3-Nitroaniline                    | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 4-Nitrophenol                     | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Dibenzofuran                      | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 2,6-Dinitrotoluene                | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 2,3,4,6-Tetrachlorophenol         | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Diethylphthalate                  | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 4-Chlorophenylphenylether         | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 4-Nitroaniline                    | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Diphenylamine                     | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 4-Bromophenylphenylether          | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Hexachlorobenzene                 | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Bis(2-ethylhexyl)ester            | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Pentachlorophenol                 | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Di-n-butylphthalate               | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Butylbenzylphthalate              | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Bis(2-ethylhexyl)phthalate        | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Di-n-octylphthalate               | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 1,4-Dinitrobenzene                | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Dimethylphthalate                 | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 1,3-Dinitrobenzene                | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 2,3,5,6-Tetrachlorophenol         | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Azobenzene                        | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| Carbazole                         | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |
| 1-Methylnaphthalene               | DETSC 3434*    | 1       | ug/l              | < 1.0      | < 1.0     | < 1.0             | < 1.0         |



### Information in Support of the Analytical Results

Our Ref 20-23332 Client Ref 4291

Contract Former Redcar Steelworks - Metal Processing Area

#### **Containers Received & Deviating Samples**

Date Inappropriate container for

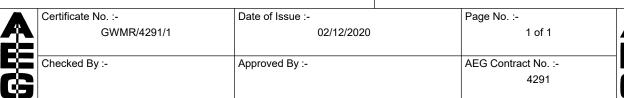
| Lab No  | Sample ID            | Sampled  | Containers Received        | Holding time exceeded for tests                    | tests |
|---------|----------------------|----------|----------------------------|----------------------------------------------------|-------|
| 1762069 | MPA_AUK_BH103D WATER | 12/11/20 | GB 1L x2, GV x2, PB 1L, PU | Aliphatics/Aromatics (4 days), Chromium,           |       |
|         |                      |          |                            | Hexavalent (4 days), Kone (4 days), pH/Cond/TDS (1 |       |
|         |                      |          |                            | days) Nitrite as N (2 days) PAH MS (4 days)        |       |
| 1762070 | MPA_AUK_BH106D WATER | 12/11/20 | GB 1L x2, GV x2, PB 1L, PU | Aliphatics/Aromatics (4 days), Chromium,           |       |
|         |                      |          |                            | Hexavalent (4 days), Kone (4 days), pH/Cond/TDS (1 |       |
|         |                      |          |                            | days) Nitrite as N (2 days) PAH MS (4 days)        |       |
| 1762071 | MPA_AUK_BH106S WATER | 12/11/20 | GB 1L x2, GV x2, PB 1L, PU | Aliphatics/Aromatics (4 days), Chromium,           |       |
|         |                      |          |                            | Hexavalent (4 days), Kone (4 days), pH/Cond/TDS (1 |       |
|         |                      |          |                            | days) Nitrite as N (2 days) PAH MS (4 days)        |       |
| 1762072 | MPA_AUK_BH102 WATER  | 12/11/20 | GB 1L x2, GV x2, PB 1L, PU | Aliphatics/Aromatics (4 days), Chromium,           |       |
|         |                      |          |                            | Hexavalent (4 days), Kone (4 days), pH/Cond/TDS (1 |       |
|         |                      |          |                            | days) Nitrite as N (2 days) PAH MS (4 days)        |       |

Key: G-Glass P-Plastic B-Bottle V-Vial U-Tube

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

#### **Disposal**

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months


**End of Report** 

### ALLIED EXPLORATION & GEOTECHNICS LIMITED Head Office: Regional Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL Tel: 01772 735 300 Fax: 01772 735 999

#### **GROUNDWATER MONITORING RESULTS**

| Monitoring<br>Point | Date and<br>Time    | Depth and<br>Type of Well | Ground Level<br>(mAOD) | Water Depth<br>(mBGL) | Reduced<br>Water Level<br>(mAOD) | Remarks |
|---------------------|---------------------|---------------------------|------------------------|-----------------------|----------------------------------|---------|
| MPA_AUK_BH101       | 09/11/2020<br>11:39 | 15.00m<br>50mm SP         | 8.94                   | 7.34                  | 1.60                             |         |
| MPA_AUK_BH101       | 09/11/2020<br>11:39 | 9.00m<br>25mm SP          | 8.94                   | 7.31                  | 1.63                             |         |
| MPA_AUK_BH102       | 09/11/2020<br>15:38 | 14.70m<br>50mm SP         | 7.37                   | 6.24                  | 1.13                             |         |
| MPA_AUK_BH102       | 09/11/2020<br>15:38 | 7.00m<br>25mm SP          | 7.37                   | 5.57                  | 1.80                             |         |
| MPA_AUK_BH103       | 09/11/2020<br>14:42 | 17.40m<br>50mm SP         | 6.70                   | 5.35                  | 1.35                             |         |
| MPA_AUK_BH103       | 09/11/2020<br>14:42 | 6.00m<br>25mm SP          | 6.70                   | 4.21                  | 2.49                             |         |
| MPA_AUK_BH106       | 09/11/2020<br>15:16 | 20.40m<br>50mm SP         | 7.51                   | 5.90                  | 1.61                             |         |
| MPA_AUK_BH106       | 09/11/2020<br>15:16 | 9.50m<br>25mm SP          | 7.51                   | 5.81                  | 1.70                             |         |
| MPA_AUK_BH106       | 09/11/2020<br>15:16 | 6.00m<br>25mm SP          | 7.51                   | 5.81                  | 1.70                             |         |
| MPA_AUK_BH107       | 09/11/2020<br>14:17 | 19.20m<br>50mm SP         | 6.80                   | 5.89                  | 0.91                             |         |
| MPA_AUK_BH107       | 09/11/2020<br>14:17 | 8.00m<br>25mm SP          | 6.80                   | 5.12                  | 1.68                             |         |
| MPA_AUK_BH107       | 09/11/2020<br>14:17 | 6.00m<br>25mm SP          | 6.80                   | 5.09                  | 1.71                             |         |
| MPA_AUK_BH108       | 09/11/2020<br>12:13 | 17.70m<br>50mm SP         | 6.32                   | 4.67                  | 1.65                             |         |
| MPA_AUK_BH108       | 09/11/2020<br>12:13 | 8.00m<br>25mm SP          | 6.32                   | 4.72                  | 1.60                             |         |
| MPA_AUK_BH108       | 09/11/2020<br>12:13 | 5.00m<br>25mm SP          | 6.32                   | 4.68                  | 1.64                             |         |

| SP = Standpipe - SPIE = Standpipe Piezometer.     |                                 |                                             |       |  |  |  |  |  |  |  |
|---------------------------------------------------|---------------------------------|---------------------------------------------|-------|--|--|--|--|--|--|--|
| Contract Title :- Metal Processing Area Deep Soil | l and Groundwater Investigation | Client :-<br>South Tees Development Corpora | ition |  |  |  |  |  |  |  |
| Certificate No. :-                                | Date of Issue :-                | Page No. :-                                 |       |  |  |  |  |  |  |  |





#### **ALLIED EXPLORATION & GEOTECHNICS LIMITED**

1 of 1

02/12/2020

Head Office:Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RGTel: 0191 387 4700 Fax: 0191 387 4710Regional Office:Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BLTel: 01772 735 300 Fax: 01772 735 999

MON/4291/1

#### **GAS MONITORING RESULTS**

|                     |                     |                        |                   |                           |                        |                       |                               |                      | GAG                     | NIOI                         | VI I O    | ZIIV     | 3 KL      | .301    | .13       |         |           |            |                               |                             |                                           |                         |
|---------------------|---------------------|------------------------|-------------------|---------------------------|------------------------|-----------------------|-------------------------------|----------------------|-------------------------|------------------------------|-----------|----------|-----------|---------|-----------|---------|-----------|------------|-------------------------------|-----------------------------|-------------------------------------------|-------------------------|
| Monitoring<br>Point | Date and<br>Time    | Weather<br>Condition   | Temperature<br>°C | Depth and<br>Type of Well | Ground Level<br>(mAOD) | Water Depth<br>(mBGL) | Reduced Water<br>Level (mAOD) | Flow Range<br>(l/hr) | Diff Pressure<br>(mbar) | ATM Pressure<br>Range (mbar) | Methane   | ۸/۸ %    | Methane   | % LEL   | Carbon    | ^/^ %   | Oxygen    | ^/^,%      | Hydrogen<br>Sulphide<br>(ppm) | Carbon<br>Monoxide<br>(ppm) | Photo-<br>lonisation<br>Detector<br>(ppm) | Remarks                 |
| 2                   |                     |                        | Te                | Ţ                         | Ð                      | >                     | Rec                           | Н                    | ā                       | AT<br>Ra                     | (P)       | (S)      | (P)       | (S)     | (P)       | (S)     | (D)       | (S)        | -                             | _                           |                                           |                         |
| PA_AUK_BH101        | 09/11/2020<br>11:39 | Clear, Sunny<br>spells | 10-13             | 9.00m<br>25mm SP          | 8.94                   | 7.31                  | 1.63                          | 0.1                  | 0.36                    | 1020                         | <0.1      | <0.1     | <2.0      | <2.0    | <0.1      | <0.1    | 20.0      | 20.0       | <1.0                          | 5.0                         | 0.1                                       |                         |
| PA_AUK_BH102        | 09/11/2020<br>15:38 | Clear, Sunny<br>spells | 10-13             | 7.00m<br>25mm SP          | 7.37                   | 5.57                  | 1.80                          | 0.1                  | 0.21                    | 1018                         | <0.1      | <0.1     | <2.0      | <2.0    | <0.1      | <0.1    | 19.3      | 19.4       | <1.0                          | <1.0                        | 0.4                                       |                         |
| PA_AUK_BH103        | 09/11/2020<br>14:42 | Clear, Sunny<br>spells | 10-13             | 6.00m<br>25mm SP          | 6.70                   | 4.21                  | 2.49                          | 0.0                  | 0.16                    | 1019                         | <0.1      | <0.1     | <2.0      | <2.0    | <0.1      | <0.1    | 19.5      | 19.6       | <1.0                          | 1.0                         | <0.1                                      |                         |
| PA_AUK_BH106        | 09/11/2020<br>15:16 | Clear, Sunny<br>spells | 10-13             | 9.50m<br>25mm SP          | 7.51                   | 5.81                  | 1.70                          | 0.1                  | 0.36                    | 1019                         | <0.1      | <0.1     | <2.0      | <2.0    | 0.1       | 0.1     | 19.9      | 19.9       | <1.0                          | <1.0                        | <0.1                                      |                         |
| IPA_AUK_BH106       | 09/11/2020<br>15:16 | Clear, Sunny<br>spells | 10-13             | 6.00m<br>25mm SP          | 7.51                   | 5.81                  | 1.70                          | 0.0                  | 0.02                    | 1019                         | <0.1      | <0.1     | <2.0      | <2.0    | 0.1       | 0.1     | 20.4      | 20.4       | <1.0                          | <1.0                        | 0.1                                       |                         |
| IPA_AUK_BH107       | 09/11/2020<br>14:17 | Clear, Sunny<br>spells | 10-13             | 8.00m<br>25mm SP          | 6.80                   | 5.12                  | 1.68                          | 0.1                  | 0.09                    | 1019                         | <0.1      | <0.1     | <2.0      | <2.0    | 0.3       | 0.3     | 19.8      | 19.8       | <1.0                          | 1.0                         | 0.8                                       |                         |
| IPA_AUK_BH107       | 09/11/2020<br>14:17 | Clear, Sunny<br>spells | 10-13             | 6.00m<br>25mm SP          | 6.80                   | 5.09                  | 1.71                          | 0.1                  | 0.04                    | 1019                         | <0.1      | <0.1     | <2.0      | <2.0    | 0.2       | 0.2     | 20.1      | 20.1       | <1.0                          | <1.0                        | 1.7                                       |                         |
| IPA_AUK_BH108       | 09/11/2020<br>12:13 | Clear, Sunny<br>spells | 10-13             | 8.00m<br>25mm SP          | 6.32                   | 4.72                  | 1.60                          | 0.1                  | 0.08                    | 1020                         | <0.1      | <0.1     | <2.0      | <2.0    | 0.1       | 0.1     | 18.4      | 18.4       | <1.0                          | 1.0                         | <0.1                                      |                         |
| IPA_AUK_BH108       | 09/11/2020<br>12:13 | Clear, Sunny<br>spells | 10-13             | 5.00m<br>25mm SP          | 6.32                   | 4.68                  | 1.64                          | 0.1                  | 0.14                    | 1020                         | <0.1      | <0.1     | <2.0      | <2.0    | 0.1       | 0.1     | 17.8      | 17.8       | <1.0                          | <1.0                        | 0.4                                       |                         |
|                     |                     |                        |                   | See a                     | ttached Ca             | alibration C          | ertificate f                  | or Model N           | o. and anv              | other deta                   | ils. SP = | Standpii | oe - SPIE | = Stand | pipe Piez | ometer. | (P) = Pea | ak - (S) = | Steady - (I                   | D) = Declin                 | э.                                        |                         |
|                     | act Title :-        | Metal Pr               | ocessii           | ng Area De                |                        |                       |                               |                      |                         | 23.0. 4014                   |           |          | Client :- |         |           |         |           |            | Corporat                      |                             |                                           | AEG Contract No :- 4291 |
| Date o              | of Issue :-         |                        |                   | Page                      | No. :-                 |                       |                               |                      | Ched                    | ked By                       | :-        |          |           |         | App       | roved   | By :-     |            |                               |                             | Certifi                                   | icate No. :-            |

#### **ALLIED EXPLORATION GEOTECHNICS LIMITED**

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG - Tel: 0191 387 4700 Fax: 0191 387 4710 Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL - Tel: 01254 503 200 Fax: 01254 662 590

|                             | IN-SITU WA       | TER QUALITY      | PARAMETI     |                                    | MG RESULTS                                       |                            |
|-----------------------------|------------------|------------------|--------------|------------------------------------|--------------------------------------------------|----------------------------|
| <br>Date o                  | of Test:         |                  | /2020        | Operator:                          | A.N                                              | Л.                         |
| Weather Co                  | ondition (inc te | mperature):      |              |                                    | C) Overcast                                      |                            |
| Monitoring<br>Point         | Time             | рН               | Temp<br>(°C) | Electrical<br>Conductivity<br>(µs) | Redox Potential (mv)                             | Dissolved<br>Oxygen<br>(%) |
|                             | 13:10:00         | 11.34            | 12.60        | 56982                              | -334.0                                           | 8.5                        |
| MPA_AUK_<br>BH101           | 13:13:00         | 11.35            | 12.59        | 57470                              | -343.0                                           | 9.2                        |
| Dillo                       | 13:16:00         | 11.35            | 12.54        | 57882                              | -288.8                                           | 10.3                       |
| MPA_AUK_                    | 14:22:00         | 10.21            | 12.40        | 48620                              | -68.4                                            | 56.4                       |
| BH108                       | 14:25:00         | 10.20            | 12.32        | 48579                              | -62.0                                            | 56.7                       |
| (50mm)                      | 14:28:00         | 10.20            | 12.35        | 48624                              | -56.9                                            | 55.8                       |
|                             |                  |                  |              |                                    |                                                  |                            |
|                             |                  |                  |              |                                    |                                                  |                            |
|                             |                  |                  |              |                                    |                                                  |                            |
|                             |                  |                  |              |                                    |                                                  |                            |
|                             |                  |                  |              |                                    |                                                  |                            |
|                             |                  |                  |              |                                    | <del>                                     </del> |                            |
|                             |                  |                  |              |                                    | + + + + + + + + + + + + + + + + + + + +          |                            |
|                             |                  |                  |              |                                    | <del>                                     </del> |                            |
|                             |                  |                  |              | +                                  | + +                                              |                            |
|                             |                  |                  |              | +                                  | +                                                |                            |
|                             |                  |                  |              | +                                  | +                                                |                            |
|                             |                  |                  |              | +                                  | + +                                              |                            |
|                             |                  |                  |              | +                                  | + +                                              |                            |
|                             |                  |                  |              | +                                  | +                                                |                            |
|                             |                  |                  |              | +                                  | +                                                |                            |
|                             |                  |                  |              | +                                  | +                                                |                            |
|                             |                  | +                |              | +                                  | +                                                |                            |
|                             | 1                |                  |              |                                    |                                                  |                            |
| Remarks :                   |                  |                  |              |                                    |                                                  |                            |
| Contract Title:  Metal Prod | _                | eep Soil and Gro | oundwater    | Client: South Tee:                 | s Development C                                  | orporation                 |
| <u>\$₩</u>                  | Checked By:      |                  |              | Approved By:                       |                                                  | A                          |
|                             | Date of issue    | Page No. :       |              | AEG Contract No. :                 |                                                  |                            |
| CS '                        | 17/11/2020       |                  |              | 4:                                 | 291                                              | œ                          |

### **ALLIED EXPLORATION GEOTECHNICS LIMITED**

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG - Tel: 0191 387 4700 Fax: 0191 387 4710 Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL - Tel: 01254 503 200 Fax: 01254 662 590

|                            | IN-SITU WAT               | TER QUALITY      | PARAMET      | ER MONITORII                       | NG RESULTS           |                            |
|----------------------------|---------------------------|------------------|--------------|------------------------------------|----------------------|----------------------------|
| Date o                     | of Test:                  | 11/11            | /2020        | Operator:                          | A.N                  | Л.                         |
| Weather C                  | ondition (inc ter         | mperature):      |              | (12-13°C                           | C) Overcast          |                            |
| Monitoring<br>Point        | Time                      | рН               | Temp<br>(°C) | Electrical<br>Conductivity<br>(µs) | Redox Potential (mv) | Dissolved<br>Oxygen<br>(%) |
|                            | 13:17:00                  | 9.34             | 12.16        | 94721                              | -170.1               | 6.4                        |
| MPA_AUK_<br>BH104          | 13:20:00                  | 9.18             | 12.12        | 86334                              | -171.0               | 5.5                        |
| Billion                    | 13:23:00                  | 9.39             | 12.13        | 97889                              | -185.7               | 5.8                        |
|                            | 11:49:00                  | 7.65             | 12.08        | 173276                             | -51.8                | 6.3                        |
| MPA_AUK_<br>BH105          | 11:52:00                  | 7.66             | 12.08        | 173002                             | -59.4                | 6.9                        |
| 211100                     | 11:55:00                  | 7.65             | 12.07        | 172948                             | -67.8                | 6.4                        |
| MPA ALIK                   | 15:27:00                  | 8.21             | 12.12        | 158217                             | -66.0                | 4.4                        |
| MPA_AUK_<br>BH107          | 15:30:00                  | 8.21             | 12.13        | 158454                             | -69.7                | 2.8                        |
| (25mm)                     | 15:33:00                  | 8.20             | 12.11        | 157181                             | -75.2                | 2.3                        |
| MPA AUK                    | 15:03:00                  | 7.91             | 12.29        | 120553                             | -9.7                 | 6.5                        |
| BH107                      | 15:06:00                  | 7.91             | 12.26        | 119787                             | -7.5                 | 6.1                        |
| (50mm)                     | 15:09:00                  | 7.90             | 12.26        | 120064                             | -5.7                 | 7.3                        |
| MPA AUK                    | 10:47:00                  | 9.48             | 12.00        | 52532                              | -186.4               | 2.5                        |
| BH108                      | 10:50:00                  | 9.56             | 12.03        | 52468                              | -196.1               | 2.5                        |
| (25mm)                     | 10:53:00                  | 9.62             | 12.04        | 51960                              | -202.1               | 1.6                        |
|                            |                           |                  |              |                                    |                      |                            |
|                            |                           |                  |              |                                    |                      |                            |
| Remarks :                  |                           |                  |              | la.                                |                      |                            |
| Contract Title:  Metal Pro | cessing Area De<br>Invest | eep Soil and Gro | oundwater    | Client: South Tees                 | s Development C      | orporation                 |
|                            | Checked By:               |                  |              | Approved By:                       |                      |                            |
| <del> </del>               | Date of issue             | Page No. :       | 4.0          | AEG Contract No. :                 | 204                  | 75                         |
| 43                         | 17/11/2020                | 2 0              | of 3         | 42                                 | 291                  | C)                         |

### **ALLIED EXPLORATION GEOTECHNICS LIMITED**

Head Office: Unit 25 Stella Gill Industrial Estate, Pelton Fell, Chester-le-Street, Co. Durham, DH2 2RG - Tel: 0191 387 4700 Fax: 0191 387 4710 Regional Office: Unit 20 Business Development Centre, Eanam Wharf, Blackburn, BB1 5BL - Tel: 01254 503 200 Fax: 01254 662 590

|                             | IN-SITU WA                 | TER QUALITY      | PARAMETI     | ER MONITORII                       | NG RESULTS           |                            |  |  |  |
|-----------------------------|----------------------------|------------------|--------------|------------------------------------|----------------------|----------------------------|--|--|--|
| Date o                      | of Test:                   | 12/11            | Operator:    | 1.A                                | M.                   |                            |  |  |  |
| Weather C                   | ondition (inc te           | mperature):      |              | (12-16°C) Overcast                 |                      |                            |  |  |  |
| Monitoring<br>Point         | Time                       | рН               | Temp<br>(°C) | Electrical<br>Conductivity<br>(µs) | Redox Potential (mv) | Dissolved<br>Oxygen<br>(%) |  |  |  |
|                             | 12:56:00                   | 7.10             | 11.64        | 168939                             | 2.4                  | 6.9                        |  |  |  |
| MPA_AUK_<br>BH102           | 12:59:00                   | 7.11             | 11.66        | 169087                             | 6.3                  | 6.9                        |  |  |  |
| BITTOL                      | 13:02:00                   | 7.11             | 11.67        | 168442                             | 9.4                  | 6.6                        |  |  |  |
|                             | 10:04:00                   | 9.72             | 11.35        | 45832                              | 64.8                 | 67.6                       |  |  |  |
| MPA_AUK_<br>BH103           | 10:07:00                   | 9.72             | 11.36        | 45774                              | 64.8                 | 68.0                       |  |  |  |
| DITIOO                      | 10:10:00                   | 9.73             | 11.34        | 45725                              | 64.9                 | 68.2                       |  |  |  |
| MPA AUK                     | 11:45:00                   | 9.35             | 11.70        | 45371                              | -181.7               | 16.7                       |  |  |  |
| BH106                       | 11:48:00                   | 9.36             | 11.73        | 41256                              | -189.9               | 15.0                       |  |  |  |
| (25mm)                      | 11:51:00                   | 9.37             | 11.77        | 42105                              | -194.1               | 15.7                       |  |  |  |
| MDA ALIK                    | 11:20:00                   | 9.32             | 11.72        | 37795                              | -67.9                | 16.5                       |  |  |  |
| MPA_AUK_<br>BH106<br>(50mm) | 11:23:00                   | 9.32             | 11.86        | 36638                              | -82.8                | 16.4                       |  |  |  |
| (50mm)                      | 11:26:00                   | 9.31             | 11.90        | 34019                              | -96.2                | 15.3                       |  |  |  |
| Remarks :                   |                            |                  |              |                                    |                      |                            |  |  |  |
| Contract Title:  Metal Pro  | _                          | eep Soil and Gro | oundwater    | Client: South Tee                  | s Development C      | corporation                |  |  |  |
| <b>₹#8</b>                  | Checked By:  Date of issue | Page No. :       |              | Approved By:  AEG Contract No. :   |                      |                            |  |  |  |
| ر جي                        | 17/11/2020                 | 3 0              | of 3         | 4:                                 | 291                  | ۲                          |  |  |  |

### TRS REPORT

Report Ref: BG0G/AEG/MAR/TRS/09/20/RP1

Date Issued: 11 September 2020 TRS Sample Refs: BG0G05-09

Order No: Job 4291

# FROM 4291 MAP SITE, REDCAR FOR ALLIED EXPLORATION & GEOTECHNICS LTD



### **Thomas Research Services Ltd.**

Tel: +44 (0) 1469 532 929 www.slagtest.co.uk

Unit 7, Tattershall Castle Court, Morgan Way, New Holland,
North Lincolnshire, DNI9 7PZ, United Kingdom

A Limited Company registered in England. Company Registration No: 2518421

# PETROLOGICAL EXAMINATION OF FIVE SAMPLES FROM

### 4291 MAP SITE, REDCAR FOR

#### **ALLIED EXPLORATION & GEOTECHNICS LTD**

#### 1. BACKGROUND

Five bulk samples were received from the above site on 31<sup>st</sup> July 2020. Each sample was weighed and allocated a unique TRS reference number, the details of which are recorded below:-

| TRS Ref | Site Ref | Depth/m | Mass/kg |
|---------|----------|---------|---------|
| BG0G01  | TP101 B5 | 1.9     | 19.5    |
| BG0G02  | TP107 B5 | 1.5     | 18.9    |
| BG0G03  | TP119 B6 | 2.0     | 17.9    |
| BG0G04  | TP120 B9 | 3.8     | 11.0    |
| BG0G05  | TP122 B9 | 3.8     | 12.0    |
|         |          |         |         |

There was a delay in processing these samples due to the Coronovirus lockdown.

The purpose of the exercise was to identify the range and relative concentrations of any iron and steelmaking slags present in the samples, and whether there was any potential for volumetric instability from the materials.

#### 2. <u>SAMPLE PREPARATION & PROGRAMME OF ANALYSIS</u>

The samples were primary crushed to reduce particle size down to <50mm, portions then being selected and dried at low temperature to constant weight. The dried material was subjected to a regime of stage crushing and quartering to further reduce particle size down to <5mm. Portions of this <5mm material

were made up into resin bound blocks, one face of which was ground flat and polished using diamond pastes. Further portions of the <5mm material were milled to a fine powder. Fractions of material were extracted throughout the preparation procedure to provide the materials necessary for further tests and analyses that may subsequently be required.

A petrological examination was made of the polished blocks using reflected light microscopy, the complete findings of which are recorded in appendix A.

#### 3. <u>DISCUSSION OF RESULTS</u>

#### 3.1 Petrology

A petrological examination was made of the five samples using reflected light microscopy. The complete findings of this examination are recorded in appendix A.

Blast furnace slag was present in all five samples, with substantial quantities present in samples BG0G 06, 08 & 09 and small amounts in samples BG0G 05 & 07. The blast furnace slag was predominantly crystalline with only minor amounts of glassy material seen. Secondary alteration due to weathering was moderate, consisting mainly of pore infill and surface rinds. Products of alteration included calcite and gypsum, with other products being difficult to identify specifically under the microscope. Old weathered blast furnace slag may occasionally contain pockets of potentially expansive material (see appendix B). This potential can only be assessed by direct expansion testing. The unaltered slag consisted predominantly of melilite, along with more minor amounts of spinel, metallic iron and sulphides.

Basic steel slag was present in four of the five samples. Samples BG0G 05 & 07 contained very large amounts, with samples BG0G 08 & 09 containing small

3

Thomas Research Services Ltd., 7 Tattershall Castle Court, New Holland, North Lincolnshire, DN19 7PZ Tel: +44 (0) 1469 532929 www.slagtest.co.uk

amounts. The slag was extensively altered due to weathering, the secondary phases being difficult to identify specifically under the microscope. The unaltered basic steel slag consisted largely of dicalcium silicate, along with more minor amounts of RO & R<sub>3</sub>O<sub>4</sub> phase, CaF phase, lime phase and periclase. The mineralogy of the basic steel slag would suggest that it may have significant potential for expansion (see appendix B). This potential can only be assessed by direct expansion testing.

A small amount of basic refractory material was seen in sample BG0G 09. This material, even in minor amounts, can have significant potential for expansion (see appendix B).

Other constituents seen in the samples, generally in minor concentrations, included alumino-silicate brick, quartz, iron ore, metal, coal and coke. A cementitious material often bound the smaller particles together. This material appeared similar to the slag alteration products.

#### 4. <u>CONCLUSIONS & RECOMMENDATIONS</u>

#### The following conclusions can be drawn:-

- Blast furnace slag was a dominant constituent in three of the samples
   (BG0G 06, 08 & 09) and a minor constituent in the remaining two.
   The slag was mainly crystalline although minor amounts of glassy material were seen. The slag showed some alteration due to weathering. Old weathered blast furnace slag may occasionally contain pockets of potentially expansive material. Potential for expansion can only be assessed with direct expansion testing.
- Basic steel slag was the dominant constituent in samples BG0G 05 and 07. It was also present in small amounts in samples 08 & 09. This material is likely to present a significant risk of expansion. Potential for expansion can only be assessed with direct expansion testing.
- Minor amounts of basic refractory material were seen in sample BG0G
   09. This product can be a significant source of expansion, even when present in relatively small amounts.
- Other products were seen in the samples in minor amounts including alumino-silicate brick, quartz, iron ore, metal, coal and coke.

The following recommendations are made:-

Samples BG0G 06, 08 & 09 should be subjected to the following tests & analyses to assess the potential for expansion of the blast furnace slag.

- Water soluble sulphate
- Acid soluble sulphate
- Total sulphur
- Thermal analysis (DTA & TGA)
- TRS accelerated expansion test

Samples BG0G 05 & 07 should be subjected to the following tests & analyses to assess the potential for expansion of the basic steel slag.

- Free CaO
- Free MgO
- Thermal analysis (DTA & TGA)
- TRS accelerated expansion test

#### **Note**

These conclusions apply only to the samples tested and may not represent the bulk of the material on the site from which they were taken.

Ian D Thomas BSc(Hons)

lan D. Thomas

**11 September 2020** 

#### <u>APPENDIX A</u>

#### PETROLOGICAL REPORT ON SAMPLES BG0G 05-09

A petrological examination has been carried out of five samples BG0G 05 to 09.

Polished blocks were prepared using particulate material crushed to a nominal size of –5mm. Representative material was made up into resin-bonded blocks. One face of each of these was ground flat and polished using diamond pastes. In addition, the surfaces were selectively etched with water and 0.1%N HCl in order to help with the phase identification.

The detailed results are given in the accompanying Table.

Samples 06, 08 and 09 consist largely of blast furnace slag and its alteration products.

Samples 05 & 07 are mainly basic steel slag. Very little basic refractory material was seen.

#### Blast furnace slag

The unaltered blast furnace slag consists mainly of crystalline melilite (Ca,Mg,Al silicate). Also, some spinel (MgAl<sub>2</sub>O<sub>4</sub>) occurs as a primary phase. The matrix, the space between the melilite crystals, is partly occupied by silicate glass and partly with other silicates. The slag contains minor amounts of iron metal occurring as tiny globules and prills and, also, dendritic crystals of Ca,Mn sulphide. Secondary alteration is moderate. It is mainly restricted to pore infill and the formation of thin rinds, especially the larnite. The secondary products are mostly finely granular and are difficult to identify specifically under the microscope. Minor amounts of calcite (CaCO<sub>3</sub>) and well-crystallised gypsum (CaSO<sub>4</sub>.2H<sub>2</sub>O) are present.

#### Basic steel slag

The unaltered basic steel slag consists mainly of dicalcium silicate, RO and  $R_3O_4$  phases (FeO and Fe $_3O_4$  with some Al, Mn, Mg and Ca in solid solution) and CaF phases (complex Ca alumino-ferrites). Individual particles vary considerably in composition. Lime phase (CaO with some Fe, Mn and Mg in solid solution) is present in minor amounts. It occurs mainly as granular particles up to about 0.1 mm in size. Periclase (MgO with some Fe in solid solution) is more common. Some metal is present as prills. The slag is extensively altered to secondary products that are difficult to identify specifically and are, probably, mainly hydrated silicates.

#### Other constituents

These include quartz, iron ore and coke. The particles are bonded together by cementitious material that is similar to the slag alteration products but probably also includes some clay. It consists mostly of complex hydrates difficult to identify under the optical microscope.

#### TRS SAMPLES BG0G 05-09

|                           | 5  | 6  | 7  | 8  | 9  |
|---------------------------|----|----|----|----|----|
| BLAST FURNACE SLAG        |    |    |    |    |    |
| Amount                    | S  | L  | S  | L  | I  |
| Phases present:-          | _  |    |    | _  | _  |
| Melilite                  |    | L  | L  | L  | L  |
| Matrix & other silicates  | S  | S  | S  | S  | S  |
| Ca sulphide               | -  | VS | -  | VS | VS |
| Metallic iron             | -  | S  | -  | S  | VS |
| Spinel                    | S  | S  | -  | S  | VS |
| Glassy slag               | -  | S  | -  | -  | -  |
| Alteration products       | S  | S  | S  | m  | S  |
| Calcite                   | -  | -  | S  | -  | -  |
| Gypsum                    | -  | -  | -  | S  | -  |
| BASIC STEEL SLAG          |    |    |    |    |    |
| Amount                    | L  | -  | L  | s  | s  |
| Phases present:-          |    |    |    |    |    |
| Dicalcium silicate        | I  | -  | I  | I  | m  |
| Tricalcium silicate       | S  | -  | -  | -  | -  |
| Unetched silicate         | -  | -  | S  | -  | -  |
| RO phase                  | m  | -  | m  | m  | m  |
| CaF phase                 | S  | -  | S  | s  | s  |
| R3O4 phase                | s  | -  | S  | S  | -  |
| Metal & rust              | S  | -  | VS | -  | VS |
| Lime phase                | VS | -  | VS | -  | -  |
| Periclase                 | S  | -  | S  | S  | s  |
| Alteration products       | m  | -  | S  | 1  | 1  |
| BASIC REFRACTORIES        |    |    |    |    |    |
| Amount                    | -  | -  | -  | -  | s  |
| OTHER CONSTITUENTS        |    |    |    |    |    |
| Alumino-silicate brick    | _  | S  | _  | _  | _  |
| Quartz, etc.              | S  | vs | VS | _  | VS |
| Intermediate slag         | S  |    | -  | _  | -  |
| Metal, rust, scale, etc.  | S  | -  | VS | VS | s  |
| Iron ore, ironstone, etc. | -  | -  | -  | -  | vs |
| Shale, etc.               | m  | _  | -  | _  | -  |
| Coke                      | s  | -  | -  | _  | VS |
| Coal & char               | -  | s  | _  | _  | -  |
| Cementitious alteration   |    | -  |    |    |    |
| products                  | S  | VS | S  | S  | S  |

L = very large, I = large, m = medium, s = small and vs = very small amounts

#### **GENERAL EXPLANATION**

L = very large, I = large, m = medium, s = small and vs = very small amounts.

**Blast furnace slag.** When present this consists mainly of melilite (Ca,Mg,Al silicate ranging in composition between  $Ca_2Al_2SiO_7$  and  $Ca_2MgSi_2O_7$ ). Other common phases are merwinite ( $Ca_3MgSi_2O_8$ ), The matrix often consists of some of the above phases, especially melilite, but may also contain other phases such as wollastonite ( $CaSiO_3$ ), anorthite ( $CaAl_2Si_2O_8$ ) and pyroxene (( $CaMg)SiO_3$ ). Spinel ( $CaMg)SiO_4$ ) may be present. Sulphides and metal usually occur and are mostly finely dispersed, but the metal sometimes occurs as prills and may contain some graphite and Ti carbo-nitride (TiCN). Material reported as ceramic in appearance is very finely crystalline. The alteration products often include calcite and gypsum but are mostly silicate and/or sulpho-aluminate hydrates that are difficult to identify specifically under the microscope.

**Basic steel slag.** When present this consists mainly of dicalcium silicate, mostly the β-form (larnite) but sometimes the alpha form. Phosphoric slags may contain nagelschmidtite ( $Ca_2SiO_4$  with  $Ca_3P_2O_8$  in solid solution). Other silicate often present in small amounts, unetched by dilute HCl, is probably melilite. RO,  $R_3O_4$  and RF phases are typically present and are mainly FeO and  $Fe_3O_4$  with some Mg, Mn, Ca, etc. in solid solution and complex Ca alumino-ferrites. There may also be some  $Fe_2O_3$  and spinel ((Mg,Fe)Al<sub>2</sub>O<sub>4</sub>). The slag typically carries minor amounts of periclase (MgO with some Fe in solid solution) and lime phase (CaO with some Fe, Mn & Mg in solid solution). Other possible minor constituents include fluorite ( $CaF_2$ ) and apatite (Ca fluoro-phosphate), the last present in phosphoric slags. The alteration products are, again, difficult to identify specifically but are probably, mainly, hydrated silicates. Portlandite ( $Ca(OH)_2$ ) may be present.

**Basic refractory material.** When present, this is mainly magnesian and consists of granular periclase (MgO) with interstitial silicates. Sometimes samples contain chrome-magnesia material with chromite present in addition to the other phases. Hot face material (from close to the furnace) may also occur. The periclase and interstitial silicates show secondary alteration similar to that of the basic steel slag. Brucite (Mg(OH)<sub>2</sub> is likely.

**Acid steel slag.** When present this consists mainly of fayalite  $((Fe,Mn)_2SiO_4)$ , Fe,Mn oxides and cristobalite (high temperature  $SiO_2$ ).

**Other slags.** The 'intermediate slag' (probably primary flush slags from steel furnaces) has a variable phase assemblage, being mainly formed of silicates, particularly dicalcium silicate, melilite, merwinite and a complex olivine phase together with spinel and wustite (FeO). Sometimes it contains significant amounts of periclase, well embedded in the slag. The 'ferrous slag' (probably from foundry operations) has similar silicates but much more substantial content of iron oxides, usually wustite. It is often associated with scale (iron oxides formed on the surface of steel during reheating/cooling). When present, the 'cindery slag' consists of various silicates and silicate glass with Fe oxides, hercynite (FeAl $_2$ O $_4$ ) and, sometimes, corundum (Al $_2$ O $_3$ ). It is usually derived from heating furnaces and is often associated with burnt shale. When present, the 'siliceous clinker' is similar but devoid of iron oxides.

**Other constituents** The alumino-silicate brick includes a range of refractory firebrick, common brick and alumina-rich refractories. The 'quartz, sandstone, etc.' may include used silica refractory material consisting of quartz and its high temperature forms. Sometimes there is a distinct granular texture and it is derived from silcrete, a kind of chert. Cementitious material may bond the finer particles together. It is similar to the other alteration products consisting mostly of complex hydrates difficult to identify under the microscope Sometimes some is used Portland cement recognised by the relict textures of the clinker and the embedded quartz sand.

Thomas Research Services Ltd., 7 Tattershall Castle Court, New Holland, North Lincolnshire, DN19 7PZ Tel: +44 (0) 1469 532929 www.slagtest.co.uk

10

#### **APPENDIX B**

## MECHANISMS OF VOLUMETRIC INSTABILITY IN IRON AND STEEL INDUSTRY SLAGS

Volumetric change with time can occur in some types of iron and steel industry slags. These mechanisms are briefly described in this section.

#### **Blast Furnace Slags**

Fresh-make air-cooled, i.e. crystalline, blast furnace slags are almost always volumetrically stable after cooling. The two mechanisms for volumetric instability listed in BS1047:1983 – "Air Cooled Blast furnace Slag for use in Construction" are:-

- a) Beta to gamma inversion of dicalcium silicate.
- b) Iron unsoundness.
- **a)** Research by G H Thomas on this phase transformation has shown the transformation to be athermal rather than isothermal. In practical terms this means that inversion, and the expansion associated with it, can only occur during the cooling cycle. In fully cooled material there would appear to be no further risk of instability from this mechanism.
- b) Iron unsoundness is a <u>very rare</u> form of instability frequently associated with operating problems in the blast furnace. TRS know of only <u>one instance</u> in over 40 years. The mechanism, which is a hydrolysis reaction, is immediately triggered off by the presence of water. Once water has initiated the reaction, the mechanism proceeds to completion. It is impossible to arrest the process once started; at least by methods operating in normal ambient conditions.

It follows that the risk of late expansion from either of these mechanisms in blast furnace slag is remote.

#### c) Sulphoaluminate Type Activity

Some years ago, G. H. Thomas discovered a third mechanism that may give rise to volumetric instability. The process is possible only in some old blast furnace slag altered

by weathering. When the sulphide sulphur in the blast furnace slags is oxidised during weathering to sulphate, under some circumstances reactions can take place within the slag to produce an 'ettringite' type product. The process is somewhat analogous to sulphatic attack on concrete and has a similar result - expansion of the mass and associated disruption.

For the mechanism to have any significance, the slag needs to have residual potential for this reaction. Evidence of past activity does not necessarily indicate further reaction is possible.

The TRS accelerated expansion test is, we believe, uniquely capable of identifying such slags, as well as instability attributable to free CaO and free MgO in steel slag & etc.

#### **Basic Steel Slags**

Basic steel slags commonly contain significant quantities of free CaO and free MgO. These free oxides are well known for the massive expansion associated with their hydration. In practical terms, it is impossible to forecast when hydration will take place, but it can be up to decades after the material was cooled – or placed. The reasons are complex, but include the varying density of the oxides, due to the variation in temperatures at which the products have been held in the furnace. Other factors influencing rate of hydration include:-

- the protection of slags by a reaction product at the oxide interface with the slag.
- the presence of the oxides as lime or magnesia rich solid solutions instead of the pure oxide.

The result is potential future volumetric instability but at an unforeseeable date. Periclase, i.e. free MgO, is relatively much slower than free CaO to hydrate.

#### **Scrap High Magnesia Refractories**

These are particularly undesirable components in fill as they commonly result in high concentrations of free MgO. The problems associated with these concentrations are similar to those where periclase is found in basic steel slag.

Thomas Research Services Ltd., 7 Tattershall Castle Court, New Holland, North Lincolnshire, DN19 7PZ Tel: +44 (0) 1469 532929 www.slagtest.co.uk

## TRS REPORT

Report Ref: BG0G/AEG/MPR/TRS/10/20/RP2

Date Issued: 11 September 2020 TRS Sample Refs: BG0G05-09

Order No: Job 4291

# FROM 4291 MPA SITE, REDCAR FOR ALLIED EXPLORATION & GEOTECHNICS LTD



## Thomas Research Services Ltd.

Tel: +44 (0) 1469 532 929 www.slagtest.co.uk

Unit 7,Tattershall Castle Court, Morgan Way, New Holland, North Lincolnshire, DN19 7PZ, United Kingdom

A Limited Company registered in England. Company Registration No: 2518421

## FROM 4291 MPA SITE, REDCAR FOR

#### **ALLIED EXPLORATION & GEOTECHNICS LTD**

#### 1. BACKGROUND

Five bulk samples were received from the above site on 31<sup>st</sup> July 2020. Each sample was weighed and allocated a unique TRS reference number, the details of which are recorded below:-

| TRS Ref | Site Ref | Depth/m | Mass/kg |
|---------|----------|---------|---------|
| BG0G05  | TP101 B5 | 1.9     | 19.5    |
| BG0G06  | TP107 B5 | 1.5     | 18.9    |
| BG0G07  | TP119 B6 | 2.0     | 17.9    |
| BG0G08  | TP120 B9 | 3.8     | 11.0    |
| BG0G09  | TP122 B9 | 3.8     | 12.0    |
|         |          |         |         |
|         |          |         |         |

There was a delay in processing these samples due to the Coronovirus lockdown.

The purpose of the exercise was to identify the range and relative concentrations of any iron and steelmaking slags present in the samples, and whether there was any potential for volumetric instability from the materials.

#### 2. <u>SAMPLE PREPARATION & PROGRAMME OF ANALYSIS</u>

The samples were primary crushed to reduce particle size down to <50mm, portions then being selected and dried at low temperature to constant weight. The dried material was subjected to a regime of stage crushing and quartering to further reduce particle size down to <5mm. Portions of this <5mm material

were made up into resin bound blocks, one face of which was ground flat and polished using diamond pastes. Further portions of the <5mm material were milled to a fine powder. Fractions of material were extracted throughout the preparation procedure to provide the materials necessary for the further tests and analyses required in the programme.

A petrological examination was made of the polished blocks using reflected light microscopy, the complete findings of which are recorded in appendix A. The results of this examination were discussed in our report of 11<sup>th</sup> September 2020. On the basis of that report, and after discussions with the client, the following tests and analyses were carried out on the samples:-

Samples BG0G09 was subjected to the following tests & analyses to assess the potential for expansion of the blast furnace slag.

- Water soluble sulphate (table 1)
- Acid soluble sulphate (table 1)
- Total sulphur (table 1)
- Thermal analysis (table 3)
- TRS accelerated expansion test (table 4)

Samples BG0G05 & 07 were subjected to the following tests & analyses to assess the potential for expansion of the basic steel slag.

- Free CaO (table 2)
- Free MgO (table 2)
- Thermal analysis (table 3)
- TRS accelerated expansion test (table 4)

#### 3. <u>DISCUSSION OF RESULTS</u>

#### 3.1 Petrology

A petrological examination was made of the five samples using reflected light microscopy. The complete findings of this examination are recorded in appendix A.

Blast furnace slag was present in all five samples, with substantial quantities present in samples BG0G 06, 08 & 09 and small amounts in samples BG0G 05 & 07. The blast furnace slag was predominantly crystalline with only minor amounts of glassy material seen. Secondary alteration due to weathering was moderate, consisting mainly of pore infill and surface rinds. Products of alteration included calcite and gypsum, with other products being difficult to identify specifically under the microscope. Old weathered blast furnace slag may occasionally contain pockets of potentially expansive material (see appendix B). This potential can only be assessed by direct expansion testing (see sections 3.2-3.5). The unaltered slag consisted predominantly of melilite, along with more minor amounts of spinel, metallic iron and sulphides.

Basic steel slag was present in four of the five samples. Samples BG0G 05 & 07 contained very large amounts, with samples BG0G 08 & 09 containing small amounts. The slag was extensively altered due to weathering, the secondary phases being difficult to identify specifically under the microscope. The unaltered basic steel slag consisted largely of dicalcium silicate, along with more minor amounts of RO &  $R_3O_4$  phase, CaF phase, lime phase and periclase. The mineralogy of the basic steel slag would suggest that it may have significant potential for expansion (see appendix B). This potential can only be assessed by direct expansion testing (see sections 3.3 to 3.5).

A small amount of basic refractory material was seen in sample BG0G 09. This material, even in minor amounts, can have significant potential for expansion

(see appendix B).

Other constituents seen in the samples, generally in minor concentrations, included alumino-silicate brick, quartz, iron ore, metal, coal and coke. A cementitious material often bound the smaller particles together. This material

appeared similar to the slag alteration products.

3.2 **Sulphur Species** 

The following range of analyses were performed on samples BG0G09 (this sample contained significant amounts of blast furnace slag). The results are recorded in table 1:-

• Water soluble sulphate

Acid soluble sulphate

Total sulphur

Total sulphur recorded was 0.77 percent. Acid soluble sulphate was 0.85 percent, with a corresponding water soluble sulphate of 0.57 g/l. These sulphate and sulphur values were fairly typical for blast furnace slag. However, care should be taken when specifying concrete that may come into contact with the slag. Calculations show that 44 percent of the available sulphur is present as sulphate.

3.3 Thermal Analysis

Simultaneous differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) were performed on samples BG0G05, 07 & 09. The results are recorded in table three.

No ettringite or gypsum was seen in any of the samples.

Thomas Research Services Ltd., 7 Tattershall Castle Court, New Holland, North Lincolnshire, DN19 7PZ Tel: +44 (0) 1469 532929 www.slagtest.co.uk

5

Calcium hydroxide was recorded in samples BG0G05 & 07 at trace and 0.6 percent. Magnesium hydroxide was measured in the same samples both at trace level. These values were used to correct the free CaO and free MgO analyses recorded in table 2.

Calcite was present in all three samples examined at between 0.2 and 3.4 percent. This product is an indicator as to the weathered state of the slag.

#### 3.4 Free CaO & Free MgO

Free CaO & free MgO analyses were carried out on samples BG0G05 & 07 (These samples contained significant mounts of basic steel slag). The results are recorded in table 2. Both original and corrected values are recorded. The original values include both the oxide (CaO and MgO) and the hydroxide ((Ca(OH)<sub>2</sub> and Mg(OH)<sub>2</sub>)) contents. The corrected values report only the oxide content (CaO and MgO) after correction using the hydroxide values from the thermal analyses. These corrected values are the more significant, as it is only the oxides that are still free to hydrate, i.e. expand.

Free lime was recorded in the samples at 1.4 and 0.8 percent. Free magnesia was recorded at 0.9 percent. These corrected free lime and free magnesia levels record oxides that are potentially still free to hydrate (i.e. expand).

Thomas Research Services Ltd., 7 Tattershall Castle Court, New Holland, North Lincolnshire, DN19 7PZ Tel: +44 (0) 1469 532929 www.slagtest.co.uk

#### 3.5 TRS Accelerated Expansion Test

The TRS accelerated expansion test was performed on samples BG0G05, 07 & 09. The results are recorded in table four. Note that the test measures potential for future expansion, and is not a measure of expansion that may have taken place in the past.

Sample BG0G09 (consisting predominantly of blast furnace slag, with minor amounts of basic steel slag and basic refractory material) recorded an expansion result of 0.29 percent. The samples containing significant basic steel slag recorded expansion results of 0.76 and 0.90 percent.

#### 4. <u>CONCLUSIONS</u>

#### The following conclusions can be drawn:-

- Blast furnace slag was a dominant constituent in three of the samples (BG0G 06, 08 & 09) and a minor constituent in the remaining two.
   The slag was mainly crystalline although minor amounts of glassy material were seen. The slag showed some alteration due to weathering. Old weathered blast furnace slag may occasionally contain pockets of potentially expansive material.
- Further testing of sample BG0G09 consisting predominantly of blast furnace slag (with minor basic steel slag & basic refractory) recorded an expansion result of 0.29 percent. The sulphate values should be taken into consideration when specifying concrete that may come into contact with the slag.
- Basic steel slag was the dominant constituent in samples BG0G 05 and
   07. It was also present in small amounts in samples 08 & 09. This material is likely to present a significant risk of expansion.

- Expansion testing of samples (BG0G05 & 07) consisting mainly of basic steel slag recorded expansion results of 0.76 and 0.90 percent.
- Minor amounts of basic refractory material were seen in sample BG0G
   09. This product can be a significant source of expansion, even when present in relatively small amounts.
- Other products were seen in the samples in minor amounts including alumino-silicate brick, quartz, iron ore, metal, coal and coke.

#### **Note**

These conclusions apply only to the samples tested and may not represent the bulk of the material on the site from which they were taken.

lan D. Thomas

Ian D Thomas BSc(Hons)

21 October 2020

#### TABLE 1 SULPHUR SPECIES ANALYSES

| TRS Ref | Site Ref | Water Sol. | Acid Sol. | Total S |
|---------|----------|------------|-----------|---------|
|         |          | SO₃ (g/l)  | SO₃ (%)   | (%)     |
| BG0G05  | TP101 B5 | -          | -         | -       |
| BG0G07  | TP119 B6 | -          | -         | -       |
| BG0G09  | TP122 B9 | 0.57       | 0.85      | 0.77    |

#### TABLE 2 ANALYSIS FOR FREE CaO AND FREE MgO

| TRS Ref | Site Ref | Free CaO<br>Original<br>(%) | Free CaO<br>Corrected<br>(%) | Free MgO<br>Original<br>(%) | Free MgO<br>Corrected<br>(%) |
|---------|----------|-----------------------------|------------------------------|-----------------------------|------------------------------|
| BG0G05  | TP101 B5 | 1.4                         | 1.4                          | 0.9                         | 0.9                          |
| BG0G07  | TP119 B6 | 1.3                         | 0.8                          | 0.9                         | 0.9                          |
| BG0G09  | TP122 B9 | -                           | -                            | -                           | -                            |

## RESULTS FROM THERMAL ANALYSIS

TABLE 3

TABLE 4

TRS Ref Mass % by Thermal Analysis Site Ref L.O.I. **Ettringite** Gypsum Calcite Ca(OH)<sub>2</sub> Mg(OH)<sub>2</sub> Others BG0G05 **TP101 B5** 1.42 0.0 0.0 1.1 0.0 trace **BG0G07 TP119 B6** 0.97 0.0 0.0 0.2 0.6 trace **BG0G09 TP122 B9** 6.44 0.0 0.0 3.4 0.0 trace

## TRS ACCELERATED EXPANSION TEST

| TRS Ref | Site Ref | 7 day<br>(%) | 14 day<br>(%) | 21 day<br>(%) | 28 day<br>(%) |
|---------|----------|--------------|---------------|---------------|---------------|
| BG0G05  | TP101 B5 | 0.55         | 0.69          | 0.74          | 0.76          |
| BG0G07  | TP119 B6 | 0.42         | 0.72          | 0.83          | 0.90          |
| BG0G09  | TP122 B9 | 0.17         | 0.28          | 0.29          | 0.29          |

#### <u>APPENDIX A</u>

#### PETROLOGICAL REPORT ON SAMPLES BG0G 05-09

A petrological examination has been carried out of five samples BG0G 05 to 09.

Polished blocks were prepared using particulate material crushed to a nominal size of -5mm. Representative material was made up into resin-bonded blocks. One face of each of these was ground flat and polished using diamond pastes. In addition, the surfaces were selectively etched with water and 0.1%N HCl in order to help with the phase identification.

The detailed results are given in the accompanying Table.

Samples 06, 08 and 09 consist largely of blast furnace slag and its alteration products.

Samples 05 & 07 are mainly basic steel slag. Very little basic refractory material was seen.

#### Blast furnace slag

The unaltered blast furnace slag consists mainly of crystalline melilite (Ca,Mg,Al silicate). Also, some spinel ( $MgAl_2O_4$ ) occurs as a primary phase. The matrix, the space between the melilite crystals, is partly occupied by silicate glass and partly with other silicates. The slag contains minor amounts of iron metal occurring as tiny globules and prills and, also, dendritic crystals of Ca,Mn sulphide. Secondary alteration is moderate. It is mainly restricted to pore infill and the formation of thin rinds, especially the larnite. The secondary products are mostly finely granular and are difficult to identify specifically under the microscope. Minor amounts of calcite ( $CaCO_3$ ) and well-crystallised gypsum ( $CaSO_4.2H_2O$ ) are present.

#### Basic steel slag

The unaltered basic steel slag consists mainly of dicalcium silicate, RO and  $R_3O_4$  phases (FeO and  $Fe_3O_4$  with some Al, Mn, Mg and Ca in solid solution) and CaF phases (complex Ca alumino-ferrites). Individual particles vary considerably in composition. Lime phase (CaO with some Fe, Mn and Mg in solid solution) is present in minor amounts. It occurs mainly as granular particles up to about 0.1 mm in size. Periclase (MgO with some Fe in solid solution) is more common. Some metal is present as prills. The slag is extensively altered to secondary products that are difficult to identify specifically and are, probably, mainly hydrated silicates.

#### Other constituents

These include quartz, iron ore and coke. The particles are bonded together by cementitious material that is similar to the slag alteration products but probably also includes some clay. It consists mostly of complex hydrates difficult to identify under the optical microscope.

#### TRS SAMPLES BG0G 05-09

|                           | 5  | 6  | 7  | 8  | 9  |
|---------------------------|----|----|----|----|----|
| BLAST FURNACE SLAG        |    |    |    |    |    |
| Amount                    | S  | L  | s  | L  | I  |
| Phases present:-          |    |    |    |    |    |
| Melilite                  | I  | L  | L  | L  | L  |
| Matrix & other silicates  | S  | S  | S  | S  | S  |
| Ca sulphide               | -  | VS | -  | VS | VS |
| Metallic iron             | -  | S  | -  | S  | VS |
| Spinel                    | S  | S  | -  | S  | VS |
| Glassy slag               | -  | S  | -  | -  | -  |
| Alteration products       | S  | S  | S  | m  | S  |
| Calcite                   | -  | -  | S  | -  | -  |
| Gypsum                    | -  | -  | -  | S  | -  |
| BASIC STEEL SLAG          |    |    |    |    |    |
| Amount                    | L  | -  | L  | s  | s  |
| Phases present:-          |    |    |    |    |    |
| Dicalcium silicate        | 1  | -  | I  | I  | m  |
| Tricalcium silicate       | s  | -  | -  | -  | -  |
| Unetched silicate         | -  | -  | S  | -  | -  |
| RO phase                  | m  | -  | m  | m  | m  |
| CaF phase                 | s  | -  | S  | s  | s  |
| R3O4 phase                | s  | -  | S  | s  | -  |
| Metal & rust              | s  | -  | VS | -  | VS |
| Lime phase                | VS | -  | VS | -  | -  |
| Periclase                 | s  | -  | S  | s  | s  |
| Alteration products       | m  | -  | s  | I  | I  |
| BASIC REFRACTORIES        |    |    |    |    |    |
| Amount                    | -  | -  | -  | -  | s  |
| OTHER CONSTITUENTS        |    |    |    |    |    |
| Alumino-silicate brick    | _  | s  | _  | -  | _  |
| Quartz, etc.              | s  | vs | VS | _  | VS |
| Intermediate slag         | s  |    | -  | _  | -  |
| Metal, rust, scale, etc.  | S  | _  | VS | VS | s  |
| Iron ore, ironstone, etc. | -  | _  | -  | -  | vs |
| Shale, etc.               | m  | _  | _  | _  | -  |
| Coke                      | s  | _  | _  | _  | VS |
| Coal & char               | -  | s  | -  | -  | -  |
| Cementitious alteration   |    | -  |    |    |    |
| products                  | S  | VS | S  | S  | S  |

L = very large, I = large, m = medium, s = small and vs = very small amounts

#### **GENERAL EXPLANATION**

L = very large, I = large, m = medium, s = small and vs = very small amounts.

**Blast furnace slag.** When present this consists mainly of melilite (Ca,Mg,Al silicate ranging in composition between  $Ca_2Al_2SiO_7$  and  $Ca_2MgSi_2O_7$ ). Other common phases are merwinite ( $Ca_3MgSi_2O_8$ ), The matrix often consists of some of the above phases, especially melilite, but may also contain other phases such as wollastonite ( $CaSiO_3$ ), anorthite ( $CaAl_2Si_2O_8$ ) and pyroxene ((CaMg)SiO<sub>3</sub>). Spinel (CaMg) may be present. Sulphides and metal usually occur and are mostly finely dispersed, but the metal sometimes occurs as prills and may contain some graphite and Ti carbo-nitride (TiCN). Material reported as ceramic in appearance is very finely crystalline. The alteration products often include calcite and gypsum but are mostly silicate and/or sulpho-aluminate hydrates that are difficult to identify specifically under the microscope.

**Basic steel slag.** When present this consists mainly of dicalcium silicate, mostly the β-form (larnite) but sometimes the alpha form. Phosphoric slags may contain nagelschmidtite ( $Ca_2SiO_4$  with  $Ca_3P_2O_8$  in solid solution). Other silicate often present in small amounts, unetched by dilute HCl, is probably melilite. RO,  $R_3O_4$  and RF phases are typically present and are mainly FeO and  $Fe_3O_4$  with some Mg, Mn, Ca, etc. in solid solution and complex Ca alumino-ferrites. There may also be some  $Fe_2O_3$  and spinel ((Mg,Fe)Al<sub>2</sub>O<sub>4</sub>). The slag typically carries minor amounts of periclase (MgO with some Fe in solid solution) and lime phase (CaO with some Fe, Mn & Mg in solid solution). Other possible minor constituents include fluorite ( $CaF_2$ ) and apatite ( $CaF_3$ ) may be present.

**Basic refractory material.** When present, this is mainly magnesian and consists of granular periclase (MgO) with interstitial silicates. Sometimes samples contain chrome-magnesia material with chromite present in addition to the other phases. Hot face material (from close to the furnace) may also occur. The periclase and interstitial silicates show secondary alteration similar to that of the basic steel slag. Brucite (Mg(OH)<sub>2</sub> is likely.

**Acid steel slag.** When present this consists mainly of fayalite  $((Fe,Mn)_2SiO_4)$ , Fe,Mn oxides and cristobalite (high temperature  $SiO_2$ ).

**Other slags.** The 'intermediate slag' (probably primary flush slags from steel furnaces) has a variable phase assemblage, being mainly formed of silicates, particularly dicalcium silicate, melilite, merwinite and a complex olivine phase together with spinel and wustite (FeO). Sometimes it contains significant amounts of periclase, well embedded in the slag. The 'ferrous slag' (probably from foundry operations) has similar silicates but much more substantial content of iron oxides, usually wustite. It is often associated with scale (iron oxides formed on the surface of steel during reheating/cooling). When present, the 'cindery slag' consists of various silicates and silicate glass with Fe oxides, hercynite (FeAl<sub>2</sub>O<sub>4</sub>) and, sometimes, corundum (Al<sub>2</sub>O<sub>3</sub>). It is usually derived from heating furnaces and is often associated with burnt shale. When present, the 'siliceous clinker' is similar but devoid of iron oxides.

**Other constituents** The alumino-silicate brick includes a range of refractory firebrick, common brick and alumina-rich refractories. The 'quartz, sandstone, etc.' may include used silica refractory material consisting of quartz and its high temperature forms. Sometimes there is a distinct granular texture and it is derived from silcrete, a kind of chert. Cementitious material may bond the finer particles together. It is similar to the other alteration products consisting mostly of complex hydrates difficult to identify under the microscope Sometimes some is used Portland cement recognised by the relict textures of the clinker and the embedded quartz sand.

Thomas Research Services Ltd., 7 Tattershall Castle Court, New Holland, North Lincolnshire, DN19 7PZ Tel: +44 (0) 1469 532929 www.slagtest.co.uk

12

#### APPENDIX B

## MECHANISMS OF VOLUMETRIC INSTABILITY IN IRON AND STEEL INDUSTRY SLAGS

Volumetric change with time can occur in some types of iron and steel industry slags. These mechanisms are briefly described in this section.

#### **Blast Furnace Slags**

Fresh-make air-cooled, i.e. crystalline, blast furnace slags are almost always volumetrically stable after cooling. The two mechanisms for volumetric instability listed in BS1047:1983 – "Air Cooled Blast furnace Slag for use in Construction" are:-

- a) Beta to gamma inversion of dicalcium silicate.
- b) Iron unsoundness.
- **a)** Research by G H Thomas on this phase transformation has shown the transformation to be athermal rather than isothermal. In practical terms this means that inversion, and the expansion associated with it, can only occur during the cooling cycle. In fully cooled material there would appear to be no further risk of instability from this mechanism.
- b) Iron unsoundness is a <u>very rare</u> form of instability frequently associated with operating problems in the blast furnace. TRS know of only <u>one instance</u> in over 40 years. The mechanism, which is a hydrolysis reaction, is immediately triggered off by the presence of water. Once water has initiated the reaction, the mechanism proceeds to completion. It is impossible to arrest the process once started; at least by methods operating in normal ambient conditions.

It follows that the risk of late expansion from either of these mechanisms in blast furnace slag is remote.

#### c) Sulphoaluminate Type Activity

Some years ago, G. H. Thomas discovered a third mechanism that may give rise to volumetric instability. The process is possible only in some old blast furnace slag altered

by weathering. When the sulphide sulphur in the blast furnace slags is oxidised during weathering to sulphate, under some circumstances reactions can take place within the slag to produce an 'ettringite' type product. The process is somewhat analogous to sulphatic attack on concrete and has a similar result - expansion of the mass and associated disruption.

For the mechanism to have any significance, the slag needs to have residual potential for this reaction. Evidence of past activity does not necessarily indicate further reaction is possible.

The TRS accelerated expansion test is, we believe, uniquely capable of identifying such slags, as well as instability attributable to free CaO and free MgO in steel slag & etc.

#### **Basic Steel Slags**

Basic steel slags commonly contain significant quantities of free CaO and free MgO. These free oxides are well known for the massive expansion associated with their hydration. In practical terms, it is impossible to forecast when hydration will take place, but it can be up to decades after the material was cooled – or placed. The reasons are complex, but include the varying density of the oxides, due to the variation in temperatures at which the products have been held in the furnace. Other factors influencing rate of hydration include:-

- the protection of slags by a reaction product at the oxide interface with the slag.
- the presence of the oxides as lime or magnesia rich solid solutions instead of the pure oxide.

The result is potential future volumetric instability but at an unforeseeable date. Periclase, i.e. free MgO, is relatively much slower than free CaO to hydrate.

#### **Scrap High Magnesia Refractories**

These are particularly undesirable components in fill as they commonly result in high concentrations of free MgO. The problems associated with these concentrations are similar to those where periclase is found in basic steel slag.

Thomas Research Services Ltd., 7 Tattershall Castle Court, New Holland, North Lincolnshire, DN19 7PZ Tel: +44 (0) 1469 532929 www.slagtest.co.uk

14

Metals Processing Area Deep Soils and Controlled Waters; Former Steelworks, Redcar. Environmental Site Assessment

#### **APPENDIX D**

**GQRA – Summary of Soil Screen** 

| Table D1: | Soil C | SAC | Protective | of H | luman    | Health  |
|-----------|--------|-----|------------|------|----------|---------|
| Table DT. | JUII C |     | riolective | 011  | ıuıııaıı | ııcaılı |

| Contaminant of Concern         | MDL  | Units          | Human Health<br>(Commercial<br>Worker) | GAC Source      | Detections    | Maximum<br>Concentration<br>Measured                                                                               | Maximum<br>Concentration<br>Measured<br>(Slag Dominant<br>Made Ground)         | Mean Concentration<br>Measured<br>(Slag Dominant<br>Made Ground) | Standard Deviation<br>(Slag Dominant<br>Made Ground) | Maximum<br>Concentratio<br>Measured<br>(TFD) |
|--------------------------------|------|----------------|----------------------------------------|-----------------|---------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| <b>l</b> letals                |      |                |                                        |                 |               |                                                                                                                    |                                                                                |                                                                  |                                                      |                                              |
| Aluminium                      | 1    | mg/kg          | 470                                    | LIGERA          | 12            | 78,000                                                                                                             | 78,000                                                                         | 51,863                                                           | 22,988                                               | 16,000                                       |
| ntimony                        | 1    | mg/kg          | 470                                    | USEPA           | 2             | 7.0                                                                                                                | 7.0                                                                            | 7.0                                                              | 0.0                                                  | 1.2                                          |
| rsenic                         | 0.2  | mg/kg          | 640                                    | S4UL<br>Arandia | 12<br>12      | 14.0<br>820                                                                                                        | 14.0                                                                           | 5.5<br>367                                                       | 3.5<br>218                                           | 8.8                                          |
| arium<br>eryllium              | 0.2  | mg/kg<br>mg/kg | 19,000<br>12                           | Arcadis<br>S4UL | 9             | 8.8                                                                                                                | 820<br>8.8                                                                     | 6.7                                                              | 2.2                                                  | 1.2                                          |
| Boron, Water Soluble           | 0.2  | mg/kg          | 240,000                                | S4UL            | 10            | 9.4                                                                                                                | 9.4                                                                            | 4.9                                                              | 2.8                                                  | 7.0                                          |
| Cadmium                        | 0.1  | mg/kg          | 190                                    | S4UL            | 0             | 0.4                                                                                                                | 0.4                                                                            | 0.2                                                              | 0.1                                                  | 0.2                                          |
| Chromium                       | 0.15 | mg/kg          | 8,600                                  | S4UL            | 12            | 520                                                                                                                | 520                                                                            | 73                                                               | 169                                                  | 26                                           |
| Chromium, Hexavalent           | 1    | mg/kg          | 33                                     | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| Copper                         | 0.2  | mg/kg          | 68,000                                 | S4UL            | 12            | 1,200                                                                                                              | 1,200                                                                          | 159                                                              | 393                                                  | 31                                           |
| on                             | 25   | mg/kg          |                                        |                 | 12            | 48,000                                                                                                             | 48,000                                                                         | 8,500                                                            | 14,968                                               | 36,000                                       |
| .ead                           | 0.3  | mg/kg          | 2,300                                  | C4SL            | 12            | 25.0                                                                                                               | 7.9                                                                            | 4.1                                                              | 2.5                                                  | 25.0                                         |
| /lagnesium                     | 1    | mg/kg          |                                        |                 | 12            | 37,000                                                                                                             | 37,000                                                                         | 29,125                                                           | 7,373                                                | 8,900                                        |
| langanese                      | 20   | mg/kg          |                                        |                 | 12            | 21,000                                                                                                             | 21,000                                                                         | 4,925                                                            | 6,184                                                | 660                                          |
| Mercury                        | 0.05 | mg/kg          | 58*                                    | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| Nolybdenum                     | 0.4  | mg/kg          | 5,540                                  | Arcadis         | 1             | 1.4                                                                                                                | 0.7                                                                            | 0.6                                                              | 0.2                                                  | 1.4                                          |
| lickel                         | 1    | mg/kg          | 980                                    | S4UL            | 9             | 37.0                                                                                                               | 7.6                                                                            | 2.8                                                              | 2.5                                                  | 37.0                                         |
| Silicon                        | 10   | mg/kg          | 0.000                                  | 04:::           | 12            | 190,000                                                                                                            | 66,000                                                                         | 58,750                                                           | 5,517                                                | 190,000                                      |
| ′anadium                       | 0.8  | mg/kg          | 9,000                                  | S4UL            | 12            | 4,500                                                                                                              | 4,500                                                                          | 604                                                              | 1,473                                                | 32                                           |
| inc                            | 1    | mg/kg          | 730,000                                | S4UL            | 12            | 110                                                                                                                | 110                                                                            | 29                                                               | 31                                                   | 95                                           |
| norganics                      |      | nll n          |                                        |                 | 10            | 11.0                                                                                                               | 40                                                                             | 11                                                               | 0.7                                                  | 0.7                                          |
| Nanide Total                   | 0.1  | pH<br>mg/kg    |                                        |                 | 12            | 11.9                                                                                                               | 12                                                                             | 11                                                               | 0.7                                                  | 8.7<br><mdi< td=""></mdi<>                   |
| Cyanide, Total                 | 0.1  | mg/kg          | - 66                                   | DQRA            | 0             | 0.2<br><mdl< td=""><td>0.2<br/><mdl< td=""><td>0.2</td><td>0.0</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<> | 0.2<br><mdl< td=""><td>0.2</td><td>0.0</td><td><mdl< td=""></mdl<></td></mdl<> | 0.2                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| Cyanide, Free                  | 0.1  | mg/kg          | 230                                    | USEPA           | 0             | 0.9                                                                                                                | 0.0                                                                            | na                                                               | na<br>na                                             | 0.9                                          |
| hiocyanate<br>Organic matter   | 0.6  | mg/kg<br>%     | 230                                    |                 | 12            | 4.1                                                                                                                | 1.8                                                                            | na<br>0.8                                                        | na<br>0.5                                            | 4.1                                          |
| ulphate Aqueous Extract as SO4 | 10   |                |                                        |                 | 12            | 2,000.0                                                                                                            | 2,000                                                                          | 1,032                                                            | 656                                                  | 680                                          |
| Sulphur (free)                 | 0.01 | mg/l<br>%      |                                        |                 | 10            | 130.0                                                                                                              | 130                                                                            | 42                                                               | 37                                                   | 26                                           |
| etroleum Hydrocarbons          | 0.01 | 70             |                                        |                 | 10            | 130.0                                                                                                              | 130                                                                            | 72                                                               |                                                      | 20                                           |
| liphatic C5-C6                 | 0.01 | mg/kg          | 3200**                                 | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| diphatic C6-C8                 | 0.01 | mg/kg          | 7800**                                 | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| diphatic C8-C10                | 0.01 | mg/kg          | 2000**                                 | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| diphatic C10-C12               | 1.5  | mg/kg          | 9700**                                 | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| liphatic C12-C16               | 1.2  | mg/kg          | 59000**                                | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| liphatic C16-C21               | 1.5  | mg/kg          | 1,600,000                              | S4UL            | 1             | 29                                                                                                                 | 29                                                                             | 29                                                               | 0.0                                                  | <mdl< td=""></mdl<>                          |
| liphatic C21-C35               | 3.4  | mg/kg          | 1,600,000                              | S4UL            | 1             | 700                                                                                                                | 700                                                                            | 700                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| Aliphatic C5-C35               | 10   | mg/kg          | n                                      | a               | 1             | 730                                                                                                                | 730                                                                            | 730                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| romatic C5-C7                  | 0.01 | mg/kg          | 26000**                                | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| romatic C7-C8                  | 0.01 | mg/kg          | 56000**                                | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| romatic C8-C10                 | 0.01 | mg/kg          | 3500**                                 | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| romatic C10-C12                | 0.9  | mg/kg          | 16000**                                | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| romatic C12-C16                | 0.5  | mg/kg          | 36000**                                | S4UL            | 1             | 24                                                                                                                 | 24                                                                             | 24                                                               | 0.0                                                  | <mdl< td=""></mdl<>                          |
| Aromatic C16-C21               | 0.6  | mg/kg          | 28,000                                 | S4UL            | 1             | 120                                                                                                                | 120                                                                            | 120                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| Aromatic C21-C35               | 1.4  | mg/kg          | 28,000                                 | S4UL            | 1             | 2,100                                                                                                              | 2,100                                                                          | 2,100                                                            | 0.0                                                  | <mdl< td=""></mdl<>                          |
| romatic C5-C35                 | 10   | mg/kg          | n                                      |                 | 1             | 2,300                                                                                                              | 2,300                                                                          | 2,300                                                            | 0.0                                                  | <mdl< td=""></mdl<>                          |
| PH Ali/Aro Total               | 10   | mg/kg          | n                                      | a               | 1             | 3,000                                                                                                              | 3,000                                                                          | 3,000                                                            | 0.0                                                  | <mdl< td=""></mdl<>                          |
| AHs                            |      |                |                                        |                 |               |                                                                                                                    |                                                                                |                                                                  |                                                      |                                              |
| laphthalene                    | 0.03 | mg/kg          | 1,900                                  | Wood            | 1             | 0.8                                                                                                                | 0.8                                                                            | 0.8                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| cenaphthylene                  | 0.03 | mg/kg          | 83000**                                | S4UL            | 0             | <mdl< td=""><td><mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>                  | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| cenaphthene                    | 0.03 | mg/kg          | 84000**                                | S4UL            | 1             | 1.4                                                                                                                | 1.4                                                                            | 1.4                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| luorene                        | 0.03 | mg/kg          | 63000**                                | S4UL            | 1             | 1.6                                                                                                                | 1.6                                                                            | 1.6                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| henanthrene                    | 0.03 | mg/kg          | 22,000                                 | S4UL<br>S4UL    | 1             | 5.2                                                                                                                | 5.2                                                                            | 5.2                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| Inthracene                     | 0.03 | mg/kg          | 520,000<br>23,000                      | S4UL<br>S4UL    | 1             | 1.7                                                                                                                | 1.7                                                                            | 1.7                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| luoranthene<br>Pyrene          | 0.03 | mg/kg          | 54,000                                 | S4UL<br>S4UL    | 2<br>1        | 5.0<br>3.6                                                                                                         | 5.0<br>3.6                                                                     | 2.5                                                              | 2.5<br>0.0                                           | <mdl< td=""></mdl<>                          |
| enzo(a)anthracene              | 0.03 | mg/kg<br>mg/kg | 170                                    | S4UL S4UL       | 1             | 1.7                                                                                                                | 1.7                                                                            | 1.7                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| Chrysene                       | 0.03 | mg/kg          | 350                                    | S4UL            | <u></u>       | 1.7                                                                                                                | 1.7                                                                            | 1.7                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| enzo(b)fluoranthene            | 0.03 | mg/kg          | 44                                     | S4UL            | <u>'</u><br>1 | 1.1                                                                                                                | 1.1                                                                            | 1.1                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| enzo(k)fluoranthene            | 0.03 | mg/kg          | 1,200                                  | S4UL            | <u>'</u><br>1 | 0.5                                                                                                                | 0.5                                                                            | 0.5                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| enzo(a)pyrene                  | 0.03 | mg/kg          | 77                                     | Wood            | <u>'</u><br>1 | 1.0                                                                                                                | 1.0                                                                            | 1.0                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| ndeno(1,2,3-c,d)pyrene         | 0.03 | mg/kg          | 500                                    | S4UL            | 1             | 0.3                                                                                                                | 0.3                                                                            | 0.3                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| bibenzo(a,h)anthracene         | 0.03 | mg/kg          | 3.5                                    | S4UL            | <u>.</u><br>1 | 0.1                                                                                                                | 0.1                                                                            | 0.1                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| enzo(g,h,i)perylene            | 0.03 | mg/kg          | 3,900                                  | S4UL            | 1             | 0.4                                                                                                                | 0.4                                                                            | 0.4                                                              | 0.0                                                  | <mdl< td=""></mdl<>                          |
| AH - USEPA 16, Total           | 0.1  | mg/kg          | n                                      |                 | 1             | 26.0                                                                                                               | 26                                                                             | 26                                                               | 0.0                                                  | <mdl< td=""></mdl<>                          |
| CBs                            |      |                |                                        |                 |               |                                                                                                                    |                                                                                |                                                                  |                                                      |                                              |
| CB 28 + PCB 31                 | 0.01 | mg/kg          | -                                      |                 | 0             | 0.00                                                                                                               | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| CB 52                          | 0.01 | mg/kg          |                                        |                 | 0             | 0.00                                                                                                               | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| PCB 101                        | 0.01 | mg/kg          |                                        |                 | 0             | 0.00                                                                                                               | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| CB 118                         | 0.01 | mg/kg          |                                        |                 | 0             | 0.00                                                                                                               | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| CB 153                         | 0.01 | mg/kg          |                                        |                 | 0             | 0.00                                                                                                               | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| CB 138                         | 0.01 | mg/kg          |                                        |                 | 0             | 0.00                                                                                                               | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| PCB 180                        | 0.01 | mg/kg          |                                        |                 | 0             | 0.00                                                                                                               | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
| CB 7 Total                     | 0.01 | mg/kg          | n                                      | a               | 0             | 0.00                                                                                                               | <mdl< td=""><td>na</td><td>na</td><td><mdl< td=""></mdl<></td></mdl<>          | na                                                               | na                                                   | <mdl< td=""></mdl<>                          |
|                                |      |                |                                        |                 |               |                                                                                                                    |                                                                                |                                                                  |                                                      |                                              |

The following GACs have been used in order of availablity:

S4UL: (Commercial End Use, 1% SOM)

LQM / CIEH (2015) The LQM / CIEH S4ULs for Human Health Risk Assessment. Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3223. All rights reserved.

C4SL: (Commerical End Department for Environment, Food and Rural Affairs (DEFRA) (2014) SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document, December 2014

Arcadis Where published criteria above are not available, Arcadis has derived GAC based on EA guidance and assumptions in line with current industry standards and standard

CLEA inputs for a commercial land use.

USEPA GAC based on US Environmental Protection Agency (USEPA) Regional Screening Levels (RSL). Available at https://www.epa.gov/risk/regional-screening-levels-rsls-generic-

tables

Wood derived GAC based on CLEA v1.07 were presented in the Wood 2019 report for benzo(a)pyrene and naphthalene. It is understood that these values were acceptable to the regulator for this site and as such they have been retained here.

#### Notes

| GAC                                                                            | Generic Assessment Criteria                                    |
|--------------------------------------------------------------------------------|----------------------------------------------------------------|
| na                                                                             | Comprises multiple contaminant, no applicable GAC              |
| 123*                                                                           | S4UL exceeds the vapour saturation limit                       |
| 123**                                                                          | S4UL exceeds the solubility saturation limit                   |
| -                                                                              | No applicable GAC readily available                            |
|                                                                                | Elements present naturally in soil with typically low toxicity |
| <mdl< td=""><td>Concentration less then the method detection limit</td></mdl<> | Concentration less then the method detection limit             |
|                                                                                | Contaminant of Concern in excess of Human Health GAC           |

Table D2: Soil GAC Protective of Human Health

| 0.059 1,000 23,000 16 2,300 - 630 99 660 - 2.9 27 0.67 1.2 11.0 99.0 1.3 8.2 56,000 8.2 5 19 23,000 39 0.16 56 110 5,700 5,900 6,600      | S4UL USEPA USEPA USEPA USEPA USEPA S4UL S4UL S4UL S4UL S4UL USEPA S4UL USEPA USEPA S4UL USEPA S4UL S4UL S4UL S4UL S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mdl <mdl="" <mdl<="" th=""></mdl>                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1,000 23,000 16 2,300 - 630 99 660 - 2,9 27 0,67 1,2 11,0 99,0 1,3 8,2 56,000 8,2 5 19 23,000 39 0,16 56 110 5,700 5,900                  | USEPA USEPA USEPA USEPA USEPA SAUL SAUL SAUL SAUL SAUL SAUL SAUL USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA SAUL USEPA USEPA SAUL USEPA USEPA USEPA USEPA SAUL SAUL SAUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 23,000  16 2,300  - 630 99 660  - 2.9 27 0.67 1.2 11.0 99.0 1.3 8.2 56,000 8.2 5 19 23,000 39 0.16 56 110 5,700 5,900                     | USEPA USEPA USEPA S4UL S4UL S4UL S4UL S4UL S4UL S4UL USEPA S4UL USEPA USEPA S4UL USEPA S4UL USEPA USEPA S4UL USEPA USEPA S4UL USEPA USEPA S4UL USEPA USEPA USEPA S4UL USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 16 2,300  - 630 99 660  - 2.9 27 0.67 1.2 11.0 99.0 1.3 8.2 56,000 8.2 5 19 23,000 39 0.16 56 110 5,700 5,900                             | USEPA USEPA S4UL S4UL S4UL S4UL S4UL S4UL S4UL USEPA S4UL USEPA USEPA S4UL USEPA USEPA S4UL USEPA USEPA USEPA USEPA S4UL USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 2,300  - 630 99 660 - 2.9 27 0.67 1.2 11.0 99.0 1.3 8.2 56,000 8.2 5 19 23,000 39 0.16 56 110 5,700 5,900                                 | USEPA  USEPA  S4UL  S4UL  S4UL  S4UL  S4UL  S4UL  S4UL  USEPA  S4UL  USEPA  USE | <mdl< td=""></mdl<>                                                                                                |
| 630<br>99<br>660<br>                                                                                                                      | USEPA S4UL S4UL S4UL S4UL S4UL S4UL S4UL USEPA S4UL USEPA USEPA S4UL USEPA S4UL USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 99 660                                                                                                                                    | S4UL S4UL S4UL S4UL S4UL S4UL S4UL USEPA USEPA USEPA USEPA S4UL USEPA S4UL USEPA USEPA S4UL USEPA S4UL USEPA S4UL USEPA S4UL USEPA S4UL USEPA USEPA S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 660  2.9  27  0.67  1.2  11.0  99.0  1.3  8.2  56,000  8.2  5  19  23,000  39  0.16  56  110  5,700  5,900                                | S4UL S4UL S4UL S4UL S4UL S4UL USEPA USEPA USEPA USEPA S4UL USEPA S4UL USEPA USEPA S4UL USEPA S4UL USEPA S4UL USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 2.9<br>27<br>0.67<br>1.2<br>11.0<br>99.0<br>1.3<br>8.2<br>56,000<br>8.2<br>5<br>19<br>23,000<br>39<br>0.16<br>56<br>110<br>5,700<br>5,900 | S4UL S4UL S4UL S4UL S4UL USEPA S4UL USEPA USEPA USEPA S4UL USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 27<br>0.67<br>1.2<br>11.0<br>99.0<br>1.3<br>8.2<br>56,000<br>8.2<br>5<br>19<br>23,000<br>39<br>0.16<br>56<br>110<br>5,700<br>5,900        | S4UL S4UL S4UL USEPA S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 27<br>0.67<br>1.2<br>11.0<br>99.0<br>1.3<br>8.2<br>56,000<br>8.2<br>5<br>19<br>23,000<br>39<br>0.16<br>56<br>110<br>5,700<br>5,900        | S4UL S4UL S4UL USEPA S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 0.67 1.2 11.0 99.0 1.3 8.2 56,000 8.2 5 19 23,000 39 0.16 56 110 5,700 5,900                                                              | S4UL S4UL USEPA USEPA USEPA USEPA S4UL USEPA S4UL USEPA S4UL USEPA S4UL USEPA S4UL USEPA USEPA USEPA USEPA USEPA USEPA USEPA S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 1.2<br>11.0<br>99.0<br>1.3<br>8.2<br>56,000<br>8.2<br>5<br>19<br>23,000<br>39<br>0.16<br>56<br>110<br>5,700<br>5,900                      | S4UL USEPA USEPA USEPA USEPA S4UL USEPA S4UL USEPA S4UL USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 11.0<br>99.0<br>1.3<br>8.2<br>56,000<br>8.2<br>5<br>19<br>23,000<br>39<br>0.16<br>56<br>110<br>5,700<br>5,900                             | USEPA USEPA USEPA USEPA S4UL USEPA USEPA S4UL USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 99.0 1.3 8.2 56,000 8.2 5 19 23,000 39 0.16 56 110 5,700 5,900                                                                            | USEPA USEPA USEPA S4UL USEPA USEPA S4UL USEPA USEPA USEPA USEPA USEPA USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 1.3 8.2 56,000 8.2 5 19 23,000 39 0.16 56 110 5,700 5,900                                                                                 | USEPA USEPA S4UL USEPA USEPA S4UL USEPA USEPA USEPA USEPA USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mdl< td=""></mdl<>                                                                                                |
| 8.2<br>56,000<br>8.2<br>5<br>19<br>23,000<br>39<br>0.16<br>56<br>110<br>5,700<br>5,900                                                    | USEPA S4UL USEPA USEPA S4UL USEPA USEPA USEPA USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <mdl <mdl="" <mdl<="" td=""></mdl>                                                                                 |
| 56,000  8.2  5  19  23,000  39  0.16  56  110  5,700  5,900                                                                               | USEPA USEPA S4UL USEPA USEPA USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <mdl <mdl="" <mdl<="" o.02="" td=""></mdl>                                                                         |
| 5<br>19<br>23,000<br>39<br>0.16<br>56<br>110<br>5,700<br>5,900                                                                            | USEPA S4UL USEPA USEPA USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <mdl 0.02="" <mdl="" <mdl<="" td=""></mdl>                                                                         |
| 19<br>23,000<br>39<br>0.16<br>56<br>110<br>5,700<br>5,900                                                                                 | S4UL USEPA USEPA USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <mdl 0.02="" <mdl="" <mdl<="" td=""></mdl>                                                                         |
| 23,000<br>39<br>0.16<br>56<br>110<br>5,700<br>5,900                                                                                       | USEPA USEPA USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl 0.02="" <mdl="" <mdl<="" td=""></mdl>                                                                         |
| 39<br>0.16<br>56<br>110<br>5,700<br>5,900                                                                                                 | USEPA USEPA S4UL S4UL S4UL S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02 <mdl <mdl="" <mdl<="" td=""></mdl>                                                                            |
| 0.16<br>56<br>110<br>5,700<br>5,900                                                                                                       | USEPA<br>S4UL<br>S4UL<br>S4UL<br>S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl<br><mdl<br><mdl<br><mdl<br><mdl< td=""></mdl<></mdl<br></mdl<br></mdl<br></mdl<br>                            |
| 56<br>110<br>5,700<br>5,900                                                                                                               | S4UL<br>S4UL<br>S4UL<br>S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <mdl<br><mdl<br><mdl<br><mdl< td=""></mdl<></mdl<br></mdl<br></mdl<br>                                             |
| 110<br>5,700<br>5,900                                                                                                                     | S4UL<br>S4UL<br>S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <mdl<br><mdl<br><mdl< td=""></mdl<></mdl<br></mdl<br>                                                              |
| 5,700<br>5,900                                                                                                                            | S4UL<br>S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <mdl<br><mdl< td=""></mdl<></mdl<br>                                                                               |
| 5,900                                                                                                                                     | S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <mdl< td=""></mdl<>                                                                                                |
| · · · · · · · · · · · · · · · · · · ·                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| -,                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIVILJL                                                                                                            |
| 35,000                                                                                                                                    | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| 86                                                                                                                                        | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| -                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl< td=""></mdl<>                                                                                                |
| 1,800                                                                                                                                     | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| 0.11                                                                                                                                      | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| -                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl< td=""></mdl<>                                                                                                |
| 23,000                                                                                                                                    | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| 1,500                                                                                                                                     | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| 23,000                                                                                                                                    | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| 120,000                                                                                                                                   | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| 1,800                                                                                                                                     | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| 120,000                                                                                                                                   | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| 120,000                                                                                                                                   | OOL! /\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <mdl< td=""></mdl<>                                                                                                |
| 30                                                                                                                                        | S4UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <mdl< td=""></mdl<>                                                                                                |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl< td=""></mdl<>                                                                                                |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl< td=""></mdl<>                                                                                                |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| ·                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl< td=""></mdl<>                                                                                                |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl< td=""></mdl<>                                                                                                |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl< td=""></mdl<>                                                                                                |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl< td=""></mdl<>                                                                                                |
| 102                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mdl< td=""></mdl<>                                                                                                |
|                                                                                                                                           | USEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mdl< td=""></mdl<>                                                                                                |
| 210                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| _                                                                                                                                         | 4,400<br>58,000<br>2,000<br>0.06<br>220<br>31<br>102<br>210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58,000     USEPA       2,000     S4UL       0.06     USEPA       220     S4UL       31     S4UL       102     S4UL |

Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document, December 2014

Arcadis

Where published criteria above are not available, Arcadis has derived GAC based on EA guidance and assumptions in line with current industry standards and standard CLEA inputs for a commerical land use.

EPA GAC base

GAC based on US Environmental Protection Agency (USEPA) Regional Screening Levels (RSL). Available at https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

**Notes** GAC

Generic Assessment Criteria

na Comprises multiple contaminant, no applicable GAC

123\* S4UL exceeds the vapour saturation limit
 123\*\* S4UL exceeds the solubility saturation limit
 No applicable GAC readily available

Elements present naturally in soil with typically low toxicity

Contaminant of Concern in excess of Human Health GAC

Table D3: Soil GAC Protective of Human Health

| Contaminant of Concern      | MDL | Units          | Human Health<br>(Commercial Worker) | GAC Source | Maximum<br>Concentration<br>Measured |
|-----------------------------|-----|----------------|-------------------------------------|------------|--------------------------------------|
| Phenol                      | 0.1 | mg/kg          | 760                                 | S4UL       | <mdl< td=""></mdl<>                  |
| Aniline                     | 0.1 | mg/kg          | 400                                 | USEPA      | <mdl< td=""></mdl<>                  |
| 2-Chlorophenol              | 0.1 | mg/kg          | 3,500                               | S4UL       | <mdl< td=""></mdl<>                  |
| Benzyl Alcohol              | 0.1 | mg/kg          | 82,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| 2-Methylphenol              | 0.1 | mg/kg          | 41,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| Bis(2-chloroisopropyl)ether | 0.1 | mg/kg          | 47,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| 3&4-Methylphenol            | 0.1 | mg/kg          | 82,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| 2,4-Dimethylphenol          | 0.1 | mg/kg          | 16,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| Bis-(dichloroethoxy)methane | 0.1 | mg/kg          |                                     |            | <mdl< td=""></mdl<>                  |
| 2,4-Dichlorophenol          | 0.1 | mg/kg          | 2,500                               | USEPA      | <mdl< td=""></mdl<>                  |
| 1,2,4-Trichlorobenzene      | 0.1 | mg/kg          | 110                                 | USEPA      | <mdl< td=""></mdl<>                  |
| 1-Chloro-3-methylphenol     | 0.1 | mg/kg          | 82,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| 2-Methylnaphthalene         | 0.1 | mg/kg          | 3,000                               | USEPA      | 0.50                                 |
| Hexachlorocyclopentadiene   | 0.1 | mg/kg          | 8                                   | USEPA      | <mdl< td=""></mdl<>                  |
| 2,4,6-Trichlorophenol       | 0.1 | mg/kg          | 210                                 | USEPA      | <mdl< td=""></mdl<>                  |
| 2,4,5-Trichlorophenol       | 0.1 | mg/kg          | 82,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| 2-Chloronaphthalene         | 0.1 | mg/kg          | 60,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| 2-Nitroaniline              | 0.1 | mg/kg          | 8,000                               | USEPA      | <mdl< td=""></mdl<>                  |
| 2,4-Dinitrotoluene          | 0.1 | mg/kg          | 7.4                                 | USEPA      | <mdl< td=""></mdl<>                  |
| 3-Nitroaniline              | 0.1 | mg/kg          |                                     |            | <mdl< td=""></mdl<>                  |
| 1-Nitrophenol               | 0.1 | mg/kg          |                                     |            | <mdl< td=""></mdl<>                  |
| Dibenzofuran                | 0.1 | mg/kg          | 1,000                               | USEPA      | 1.30                                 |
| 2,6-Dinitrotoluene          | 0.1 | mg/kg          | 1.50                                | USEPA      | <mdl< td=""></mdl<>                  |
| 2,3,4,6-Tetrachlorophenol   | 0.1 | mg/kg          | 25,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| Diethylphthalate            | 0.1 | mg/kg          | 660,000                             | USEPA      | <mdl< td=""></mdl<>                  |
| 1-Chlorophenylphenylether   | 0.1 | mg/kg          |                                     |            | <mdl< td=""></mdl<>                  |
| 1-Nitroaniline              | 0.1 | mg/kg          | 110                                 | USEPA      | <mdl< td=""></mdl<>                  |
| 2-Methyl-4,6-Dinitrophenol  | 0.1 | mg/kg          |                                     |            | <mdl< td=""></mdl<>                  |
| Diphenylamine               | 0.1 | mg/kg          | 82,000                              | USEPA      | <mdl< td=""></mdl<>                  |
| 4-Bromophenylphenylether    | 0.1 | mg/kg          |                                     |            | <mdl< td=""></mdl<>                  |
| Hexachlorobenzene           | 0.1 | mg/kg          | 110                                 | S4UL       | <mdl< td=""></mdl<>                  |
| Pentachlorophenol           | 0.1 | mg/kg          | 400                                 | S4UL       | <mdl< td=""></mdl<>                  |
| Di-n-butylphthalate         | 0.1 | mg/kg          | -                                   | 2.32       | <mdl< td=""></mdl<>                  |
| Butylbenzylphthalate        | 0.1 | mg/kg          | 1,200                               | USEPA      | <mdl< td=""></mdl<>                  |
| Bis(2-ethylhexyl)phthalate  | 0.1 | mg/kg          | 160                                 | USEPA      | <mdl< td=""></mdl<>                  |
| Di-n-octylphthalate         | 0.1 | mg/kg          | 8,200                               | USEPA      | <mdl< td=""></mdl<>                  |
| 1,4-Dinitrobenzene          | 0.1 | mg/kg          | 82                                  | USEPA      | <mdl< td=""></mdl<>                  |
| Dimethylphthalate           | 0.1 | mg/kg          | 02                                  | UULFA      | <mdl< td=""></mdl<>                  |
| 1,3-Dinitrobenzene          | 0.1 |                | 82                                  | USEPA      | <mdl< td=""></mdl<>                  |
| 1,3-Dinitropenzene          | 0.1 | mg/kg          | 82                                  | USEPA      | <mdl< td=""></mdl<>                  |
| ,                           |     | mg/kg          |                                     | USEPA      |                                      |
| 2,3,5,6-Tetrachlorophenol   | 0.1 | mg/kg          | -                                   | LICEDA     | <mdl< td=""></mdl<>                  |
| Azobenzene<br>Carbazole     | 0.1 | mg/kg<br>mg/kg | 26                                  | USEPA      | <mdl<br>0.80</mdl<br>                |

The following GACs have been used in order of availablity:

S4UL: (Commercial End Use, 1%

SOM)

LQM / CIEH (2015) The LQM / CIEH S4ULs for Human Health Risk Assessment. Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3223. All rights reserved.

C4SL: (Commerical End Use)

Department for Environment, Food and Rural Affairs (DEFRA) (2014) SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document, December 2014

Arcadis

Where published criteria above are not available, Arcadis has derived GAC based on EA guidance and assumptions in line with current industry standards and standard CLEA inputs for a commerical land use.

**USEPA** 

GAC based on US Environmental Protection Agency (USEPA) Regional Screening Levels (RSL). Available at https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

#### **Notes**

GAC Generic Assessment Criteria

na Comprises multiple contaminant, no applicable GAC

123\* S4UL exceeds the vapour saturation limit 123\*\* S4UL exceeds the solubility saturation limit No applicable GAC readily available

Elements present naturally in soil with typically low toxicity Contaminant of Concern in excess of Human Health GAC

Metals Processing Area Deep Soils and Controlled Waters; Former Steelworks, Redcar. Environmental Site Assessment

#### **APPENDIX E**

**GQRA – Summary of Soil Leachate Screen** 

Table E1: Leachate GAC Protective of Human Health and Water Resources

| Contaminant of Concern  | MDL   | Units | Human Health<br>Inhalation GAC (On-<br>site Commerical<br>Worker) | EQS<br>(Estuaries and<br>Coastal Waters) | DWS   | Maximum<br>Concentratio<br>Measured    |
|-------------------------|-------|-------|-------------------------------------------------------------------|------------------------------------------|-------|----------------------------------------|
| etals                   |       |       |                                                                   |                                          |       |                                        |
| ntimony, Dissolved      | 0.17  | ug/l  | NVP                                                               | -                                        | 5     | 0.72                                   |
| senic, Dissolved        | 0.16  | ug/l  | NVP                                                               | 25                                       | 10    | 0.75                                   |
| rium, Dissolved         | 0.26  | ug/l  | NVP                                                               | -                                        | 700   | 75                                     |
| ryllium, Dissolved      | 0.1   | ug/l  | NVP                                                               | -                                        | -     | 0.1                                    |
| ron, Dissolved          | 12    | ug/l  | NVP                                                               | 7000                                     | 1000  | 170                                    |
| idmium, Dissolved       | 0.03  | ug/l  | NVP                                                               | 0.2                                      | 5     | 0.21                                   |
| romium, Dissolved       | 0.25  | ug/l  | NVP                                                               | -                                        | 50    | 2.7                                    |
| romium, Hexavalent      | 7     | ug/l  | -                                                                 | 0.6                                      |       | 0.0                                    |
| pper, Dissolved         | 0.4   | ug/l  | NVP                                                               | 3.76                                     | 2000  | 4.7                                    |
| n, Dissolved            | 5.5   | ug/l  | NVP                                                               | 1000                                     | 200   | 53                                     |
| ad, Dissolved           | 0.09  | ug/l  | NVP                                                               | 1.3                                      | 10    | 1.7                                    |
| gnesium, Dissolved      | 0.02  | mg/l  | NVP                                                               | -                                        | -     | 0.77                                   |
| nganese, Dissolved      | 0.22  | ug/l  | NVP                                                               | -                                        | 50    | 38                                     |
| rcury, Dissolved        | 0.01  | ug/l  | NVP                                                               | 0.07                                     | 1     | 0.02                                   |
| lybdenum, Dissolved     | 1.1   | ug/l  | -                                                                 | -                                        | 70    | 6.2                                    |
| kel, Dissolved          | 0.5   | ug/l  | NVP                                                               | 8.6                                      | 20    | 2.1                                    |
| nadium, Dissolved       | 0.6   | ug/l  | NVP                                                               | 100                                      | -     | 3.8                                    |
| c, Dissolved            | 1.3   | ug/l  | NVP                                                               | 7.9                                      | 3000  | 240                                    |
| rganics                 |       |       |                                                                   |                                          |       |                                        |
|                         | -     | рН    | -                                                                 | 6 - 8.5                                  | -     | 9.2                                    |
| anide, Total            | 40    | ug/l  | -                                                                 | 1                                        | 50    | <mdl< td=""></mdl<>                    |
| nmoniacal Nitrogen as N | 0.015 | mg/l  |                                                                   | -                                        | 0.5   | 0.06                                   |
| loride                  | 0.1   | mg/l  |                                                                   |                                          | -     | 37                                     |
| phate as SO4            | 0.1   | mg/l  |                                                                   | -                                        | -     | 180                                    |
| roleum Hydrocarbons     |       |       |                                                                   |                                          |       |                                        |
| phatic C5-C6            | 0.1   | ug/l  | >SOL                                                              | #                                        | #     | <mdl< td=""></mdl<>                    |
| phatic C6-C8            | 0.1   | ug/l  | >SOL                                                              | #                                        | #     | <mdl< td=""></mdl<>                    |
| hatic C8-C10            | 0.1   | ug/l  | >SOL                                                              | #                                        | #     | <mdl< td=""></mdl<>                    |
| phatic C10-C12          | 1     | ug/l  | >SOL                                                              | #                                        | #     | <mdl< td=""></mdl<>                    |
| phatic C12-C16          | 1     | ug/l  | >SOL                                                              | #                                        | #     | <mdl< td=""></mdl<>                    |
| phatic C16-C21          | 1     | ug/l  | NR                                                                |                                          |       | <mdl< td=""></mdl<>                    |
| phatic C21-C35          | 1     | ug/l  | NR                                                                | #                                        | #     | <mdl< td=""></mdl<>                    |
| omatic C5-C7            | 0.1   | ug/l  | 57000                                                             | 8                                        | 1     | <mdl< td=""></mdl<>                    |
| omatic C7-C8            | 0.1   | ug/l  | >SOL                                                              | 74                                       | 700   | <mdl< td=""></mdl<>                    |
| omatic C8-C10           | 0.1   | ug/l  | >SOL                                                              | #                                        | #     | <mdl< td=""></mdl<>                    |
| omatic C10-C12          | 1     | ug/l  | >SOL                                                              | #                                        | #     | <mdl< td=""></mdl<>                    |
| omatic C12-C16          | 1     | ug/l  | >SOL                                                              | #                                        | #     | <mdl< td=""></mdl<>                    |
| omatic C16-C21          | 1     | ug/l  | NR                                                                | #                                        | #     | <mdl< td=""></mdl<>                    |
| ematic C21-C35          | 1     | ug/l  | NR                                                                | #                                        | #     | <mdl< td=""></mdl<>                    |
| H Ali/Aro Total         | 10    | ug/l  |                                                                   | 50*                                      | 10**  | <mdl< td=""></mdl<>                    |
|                         | 10    | ug/i  | na                                                                | 50                                       | 10    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| Hs                      | 0.05  | ua/l  | - COI                                                             | 2                                        |       | 0.00                                   |
| phthalene               |       | ug/l  | >SOL                                                              | 2                                        | 2     | 0.26                                   |
| enaphthylene            | 0.01  | ug/l  | >SOL                                                              | •                                        | -     | 0.05                                   |
| enaphthene              | 0.01  | ug/l  | >SOL                                                              | -                                        | -     | 0.07                                   |
| orene                   | 0.01  | ug/l  | >SOL                                                              | -                                        | -     | 0.4                                    |
| enanthrene              | 0.01  | ug/l  | >SOL                                                              | -                                        | -     | 0.79                                   |
| chracene                | 0.01  | ug/l  | >SOL                                                              | 0.1                                      | -     | 0.05                                   |
| oranthene               | 0.01  | ug/l  | >SOL                                                              | 0.0063                                   | -     | 0.02                                   |
| ene                     | 0.01  | ug/l  | >SOL                                                              | -                                        | -     | 0.07                                   |
| nzo(a)anthracene        | 0.01  | ug/l  | >SOL                                                              | -                                        | -     | 0.01                                   |
| ysene                   | 0.01  | ug/l  | >SOL                                                              | •                                        | -     | 0.04                                   |
| nzo(b)fluoranthene      | 0.01  | ug/l  | >SOL                                                              | 0.017                                    | 0.025 | <mdl< td=""></mdl<>                    |
| nzo(k)fluoranthene      | 0.01  | ug/l  | >SOL                                                              | 0.017                                    | 0.025 | <mdl< td=""></mdl<>                    |
| nzo(a)pyrene            | 0.01  | ug/l  | >SOL                                                              | 0.027                                    | 0.01  | <mdl< td=""></mdl<>                    |
| eno(1,2,3-c,d)pyrene    | 0.01  | ug/l  | >SOL                                                              | -                                        | 0.025 | <mdl< td=""></mdl<>                    |
| penzo(a,h)anthracene    | 0.01  | ug/l  | >SOL                                                              | -                                        | -     | <mdl< td=""></mdl<>                    |
| nzo(g,h,i)perylene      | 0.01  | ug/l  | >SOL                                                              | 0.00082                                  | 0.025 | <mdl< td=""></mdl<>                    |
| H Total                 | 0.2   | ug/l  | >SOL                                                              | na                                       | a     | 1.7                                    |
| enols                   |       |       |                                                                   |                                          |       |                                        |

Arcadis

Where published criteria above are not available, Arcadis has derived GAC based on EA guidance and assumptions in line with current industry standards and standard CLEA inputs for a commercial land use.

|                                                                                | commencer land dec.                                                                       |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Notes                                                                          |                                                                                           |
| GAC                                                                            | Generic Assessment Criteria                                                               |
| DWS                                                                            | Drinking Water Standard                                                                   |
| EQS                                                                            | Environmental Quality Standard (Estuaries and Coastal Waters)                             |
| NVP                                                                            | Contaminant has low vapour phase in groundwater                                           |
| >SOL                                                                           | Target acceptable risk not exceeded at the theoretical solubility concentration           |
| NR                                                                             | No appropriate inhalation reference dose identified during review of toxicological data   |
| na                                                                             | Comprises multiple contaminant, no applicable GAC                                         |
| -                                                                              | No water quality standard identified as suitable for deriving generic assessment criteria |
| #                                                                              | No GAC for individua TPH fractions given that the compliacne criteria is for sum TPH      |
| <mdl< td=""><td>Concentration less then the method detection limit</td></mdl<> | Concentration less then the method detection limit                                        |
|                                                                                | Contaminant of Concern in excess of Human Health GAC                                      |
| 1.23                                                                           | Contaminant of Concern in excess of DWS                                                   |
| 1.23                                                                           | Contaminant of Concern in excess of EQS                                                   |
| 1.23                                                                           | Contaminant of Concern in excess of DWS and EQS                                           |
| *                                                                              | EC Surface Water Directive, 1975                                                          |
| **                                                                             | Water Supply (Water Quality) Regulation, 1989                                             |
|                                                                                |                                                                                           |

Metals Processing Area Deep Soils and Controlled Waters; Former Steelworks, Redcar. Environmental Site Assessment

#### **APPENDIX F**

**GQRA – Summary Groundwater Screen** 

Table F1: Groundwater GAC Protective of Human Health and Water Resources

| Table F1: Groundwater GAC Prote |       |              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                      |
|---------------------------------|-------|--------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|
| Contaminant of Concern          | MDL   | Units        | Human Health<br>Inhalation GAC (On-<br>site Commerical<br>Worker) | EQS<br>(Estuaries and<br>Coastal Waters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DWS   | Maximum<br>Concentration<br>Measured |
| Metals                          |       |              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                      |
| Antimony, Dissolved             | 0.17  | ug/l         | NVP                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5     | 0.32                                 |
| Arsenic, Dissolved              | 0.16  | ug/l         | NVP                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10    | 1.80                                 |
| Barium, Dissolved               | 0.26  | ug/l         | NVP                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 700   | 68.0                                 |
| Boron, Dissolved                | 12    | ug/l         | NVP                                                               | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000  | 4,500                                |
| Cadmium, Dissolved              | 0.03  | ug/l         | NVP                                                               | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5     | 0.10                                 |
| Calcium                         |       |              |                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 910                                  |
| Chromium, Dissolved             | 0.25  | ug/l         | NVP                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50    | 5.5                                  |
| Chromium, Hexavalent            | 7     | ug/l         | -                                                                 | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0.0                                  |
| Copper, Dissolved               | 0.4   | ug/l         | NVP                                                               | 3.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000  | 1.2                                  |
| Iron, Dissolved                 | 5.5   | ug/l         | NVP                                                               | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200   | 1,400                                |
| Lead, Dissolved                 | 0.09  | ug/l         | NVP                                                               | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10    | 1.4                                  |
| Magnesium, Dissolved            | 0.02  | mg/l         | NVP                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 1,000                                |
| Manganese, Dissolved            | 0.22  | ug/l         | NVP                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50    | 1,200                                |
| Mercury, Dissolved              | 0.01  | ug/l         | NVP                                                               | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 70  | 0.04                                 |
| Molybdenum, Dissolved           | 0.5   | ug/l         | - NV/D                                                            | - 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70    | 30                                   |
| Nickel, Dissolved<br>Sodium     | 0.5   | ug/l<br>ug/l | NVP                                                               | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20    | 6.7<br>4,300                         |
| Sodium<br>Vanadium, Dissolved   | 0.6   | ug/l<br>ug/l | -<br>NVP                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | 4,300                                |
| Zinc, Dissolved                 | 1.3   | ug/l         | NVP                                                               | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3000  | 4.3                                  |
| Inorganics                      |       |              | 1111                                                              | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5555  | 7.0                                  |
| pH                              | -     | pН           | -                                                                 | 6 - 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -     | 10.8                                 |
| Cyanide, Total                  | 40    | ug/l         | -                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50    | <mdl< td=""></mdl<>                  |
| Cyanide, Free                   | 20    | ug/l         | -                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | <mdl< td=""></mdl<>                  |
| Thiocyanate                     | 20    | ug/l         |                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 47                                   |
| Dissolved Organic Carbon        | 2     | mg/l         |                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 23                                   |
| Ammoniacal Nitrogen as N        | 0.015 | mg/l         | -                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5   | 1.9                                  |
| Chloride                        | 0.1   | mg/l         | -                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 4,000                                |
| Nitrate as N                    | 0.1   | mg/l         | -                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 0.32                                 |
| Nitrite as N                    | 0.035 | mg/l         | -                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 0.068                                |
| Salinity (Calculated)           |       |              | -                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 7.7                                  |
| Silicate as SiO2                | 0.1   | mg/l         |                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | <mdl< td=""></mdl<>                  |
| Sulphate as SO4                 | 0.1   | mg/l         | •                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 1,500                                |
| Sulphur Free                    | 84    | ug/l         |                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | <mdl< td=""></mdl<>                  |
| Petroleum Hydrocarbons          | 0.1   | /1           | 2001                                                              | щ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | AMDI                                 |
| Aliphatic C5-C6 Aliphatic C6-C8 | 0.1   | ug/l<br>ug/l | >SOL<br>>SOL                                                      | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| Aliphatic C8-C10                | 0.1   | ug/l         | >SOL                                                              | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| Aliphatic C10-C12               | 1     | ug/l         | >SOL                                                              | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| Aliphatic C12-C16               | 1     | ug/l         | >SOL                                                              | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| Aliphatic C16-C21               | 1     | ug/l         | NR                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <mdl< td=""></mdl<>                  |
| Aliphatic C21-C35               | 1     | ug/l         | NR                                                                | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| Aromatic C5-C7                  | 0.1   | ug/l         | 57000                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | <mdl< td=""></mdl<>                  |
| Aromatic C7-C8                  | 0.1   | ug/l         | >SOL                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700   | <mdl< td=""></mdl<>                  |
| Aromatic C8-C10                 | 0.1   | ug/l         | >SOL                                                              | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| Aromatic C10-C12                | 1     | ug/l         | >SOL                                                              | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| Aromatic C12-C16                | 1     | ug/l         | >SOL                                                              | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| Aromatic C16-C21                | 1     | ug/l         | NR                                                                | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| Aromatic C21-C35                | 1     | ug/l         | NR                                                                | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #     | <mdl< td=""></mdl<>                  |
| TPH Ali/Aro Total               | 10    | ug/l         | na                                                                | 50*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10**  | <mdl< td=""></mdl<>                  |
| PAHs                            |       |              | ļ                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                      |
| Naphthalene                     | 0.05  | ug/l         | >SOL                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2     | 0.13                                 |
| Acenaphthylene                  | 0.01  | ug/l         | >SOL                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 0.03                                 |
| Acenaphthene                    | 0.01  | ug/l         | >SOL                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 0.05                                 |
| Fluorene                        | 0.01  | ug/l         | >SOL                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 0.03                                 |
| Phenanthrene<br>Anthracene      | 0.01  | ug/l         | >SOL<br>>SOL                                                      | - 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     | 0.03                                 |
| Anthracene<br>Fluoranthene      | 0.01  | ug/l<br>ug/l | >SOL<br>>SOL                                                      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | 0.03<br><b>0.22</b>                  |
| Pyrene                          | 0.01  | ug/l         | >SOL<br>>SOL                                                      | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -     | 0.22                                 |
| Benzo(a)anthracene              | 0.01  | ug/l         | >SOL<br>>SOL                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 0.2                                  |
| Chrysene                        | 0.01  | ug/l         | >SOL                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 0.09                                 |
| Benzo(b)fluoranthene            | 0.01  | ug/l         | >SOL                                                              | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.025 | 0.14                                 |
| Benzo(k)fluoranthene            | 0.01  | ug/l         | >SOL                                                              | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.025 | 0.06                                 |
| Benzo(a)pyrene                  | 0.01  | ug/l         | >SOL                                                              | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01  | 0.09                                 |
| ndeno(1,2,3-c,d)pyrene          | 0.01  | ug/l         | >SOL                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.025 | 0.11                                 |
| Dibenzo(a,h)anthracene          | 0.01  | ug/l         | >SOL                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     | 0.02                                 |
| Benzo(g,h,i)perylene            | 0.01  | ug/l         | >SOL                                                              | 0.00082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.025 | 0.09                                 |
| PAH Total                       | 0.2   | ug/l         | >SOL                                                              | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1                                    |
| Phenois                         |       |              | 1                                                                 | The state of the s |       | ·                                    |
| Phenol - Monohydric             | 100   | ug/l         | >SOL                                                              | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.7   | 680                                  |
| The following GACs have bee     |       |              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                      |

Arcadis

Where published criteria above are not available, Arcadis has derived GAC based on EA guidance and assumptions in line with current industry standards and standard CLEA inputs for a commercial land use.

| Generic Assessment Criteria                                                               |
|-------------------------------------------------------------------------------------------|
| Drinking Water Standard                                                                   |
| Environmental Quality Standard (Estuaries and Coastal Waters)                             |
| Contaminant has low vapour phase in groundwater                                           |
| Target acceptable risk not exceeded at the theoretical solubility concentration           |
| No appropriate inhalation reference dose identified during review of toxicological data   |
| Comprises multiple contaminant, no applicable GAC                                         |
| No water quality standard identified as suitable for deriving generic assessment criteria |
| No GAC for individua TPH fractions given that the compliacne criteria is for sum TPH      |
| Concentration less then the method detection limit                                        |
| Contaminant of Concern in excess of Human Health GAC                                      |
| Contaminant of Concern in excess of DWS                                                   |
| Contaminant of Concern in excess of EQS                                                   |
| Contaminant of Concern in excess of DWS and EQS                                           |
| EC Surface Water Directive, 1975                                                          |
|                                                                                           |

\* Water Supply (Water Quality) Regulation, 1989

Table F1: Groundwater GAC Protective of Human Health and Water Resources

| Contaminant of Concern                              | MDL Units |              | Human Health<br>Inhalation GAC (On-<br>site Commerical<br>Worker) | ite Commerical (Estuaries and Coastal Waters) |                  | Maximum<br>Concentration<br>Measured |  |
|-----------------------------------------------------|-----------|--------------|-------------------------------------------------------------------|-----------------------------------------------|------------------|--------------------------------------|--|
| /OCs                                                |           |              |                                                                   |                                               |                  |                                      |  |
| Dichlorodifluoromethane                             | 1         | ug/l         |                                                                   | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| Chloromethane                                       | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| inyl Chloride<br>romomethane                        | 1         | ug/l         | 5000                                                              | <u> </u>                                      | 0.5              | <mdl< td=""></mdl<>                  |  |
| Chloroethane                                        | 1         | ug/l<br>ug/l |                                                                   | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| richlorofluoromethane                               | 1         | ug/l         |                                                                   |                                               | -                | <mdl< td=""></mdl<>                  |  |
| ,1-dichloroethylene                                 | 1         | ug/l         | 740000                                                            |                                               | 140              | <mdl< td=""></mdl<>                  |  |
| Methylene Chloride                                  | 27        | ug/l         | -                                                                 |                                               | -                | 27.0                                 |  |
| rans-1,2-dichloroethylene                           | 1         | ug/l         | 430000                                                            | -                                             | 25 <sup>2</sup>  | <mdl< td=""></mdl<>                  |  |
| ,1-dichloroethane                                   | 1         | ug/l         | 1600000                                                           | -                                             | 2.7              | <mdl< td=""></mdl<>                  |  |
| cis-1,2-dichloroethylene                            | 1         | ug/l         | 120000                                                            | -                                             | 25 <sup>2</sup>  | <mdl< td=""></mdl<>                  |  |
| ,2-dichloropropane                                  | 1         | ug/l         |                                                                   |                                               |                  | <mdl< td=""></mdl<>                  |  |
| romochloromethane                                   | 2         | ug/l         |                                                                   | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| Chloroform                                          | 4         | ug/l         | 820000                                                            | 2.5                                           | 100 <sup>3</sup> | <mdl< td=""></mdl<>                  |  |
| ,1,1-trichloroethane                                | 1         | ug/l         | >SOL                                                              | 100                                           | 2000             | <mdl< td=""></mdl<>                  |  |
| ,1-dichloropropene                                  | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| arbon tetrachloride                                 | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| enzene                                              | 1         | ug/l         | 57000                                                             | 8                                             | 1                | <mdl< td=""></mdl<>                  |  |
| ,2-dichloroethane                                   | 1         | ug/l         | 3600                                                              | 10                                            | 3                | <mdl< td=""></mdl<>                  |  |
| richloroethylene                                    | 1         | ug/l         | 13000                                                             | 10                                            | 5 <sup>2</sup>   | <mdl< td=""></mdl<>                  |  |
| ,2-dichloropropane                                  | 1         | ug/l         |                                                                   | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ibromomethane                                       | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| romodichloromethane                                 | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| is-1,3-dichloropropene                              | 4         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| oluene                                              | 1         | ug/l         | >SOL                                                              | 74                                            | 700              | <mdl< td=""></mdl<>                  |  |
| ans-1,3-dichloropropene                             | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ,1,2-trichloroethane                                | 1         | ug/l         | -                                                                 | 300                                           | -                | <mdl< td=""></mdl<>                  |  |
| etrachloroethylene                                  | 1         | ug/l         | 140000                                                            | 10                                            | 5 <sup>2</sup>   | <mdl< td=""></mdl<>                  |  |
| ,3-dichloropropane                                  | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ibromochloromethane                                 | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ,2-dibromoethane                                    | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| chlorobenzene                                       | 1         | ug/l         | 130000                                                            | -                                             | 100              | <mdl< td=""></mdl<>                  |  |
| ,1,1,2-tetrachloroethane                            | 1         | ug/l         |                                                                   | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| thylbenzene                                         | 1         | ug/l         | >SOL                                                              | -                                             | 300              | <mdl< td=""></mdl<>                  |  |
| n+p-Xylene                                          | 1         | ug/l         | >SOL                                                              | 30                                            | 500              | <mdl< td=""></mdl<>                  |  |
| -Xylene                                             | 2         | ug/l         | >SOL                                                              |                                               |                  | <mdl< td=""></mdl<>                  |  |
| tyrene                                              | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| romoform                                            | 1         | ug/l         |                                                                   | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| sopropylbenzene                                     | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ,1,2,2-tetrachloroethane                            | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| romobenzene                                         | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ,2,3-trichloropropane                               | 1         | ug/l         | -                                                                 | •                                             | -                | <mdl< td=""></mdl<>                  |  |
| -propylbenzene                                      | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| -chlorotoluene                                      | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ,3,5-trimethylbenzene                               | 1         | ug/l         | -                                                                 | •                                             | -                | <mdl< td=""></mdl<>                  |  |
| -chlorotoluene                                      | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ert-butylbenzene                                    | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| 2,4-trimethylbenzene<br>ec-butylbenzene             | 1         | ug/l         | -                                                                 | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ec-butylbenzene<br>isopropyltoluene                 | 1         | ug/l         | -                                                                 | •                                             | -                | <mdl<br><mdl< td=""></mdl<></mdl<br> |  |
| 3-dichlorobenzene                                   | 1         | ug/l<br>ug/l |                                                                   | •                                             |                  | <mdl< td=""></mdl<>                  |  |
| 4-dichlorobenzene                                   | 2         | ug/l<br>ug/l | -                                                                 | •                                             | -                | <mdl< td=""></mdl<>                  |  |
| -butylbenzene                                       | 1         | ug/l         |                                                                   | •                                             |                  | <mdl< td=""></mdl<>                  |  |
| ,2-dichlorobenzene                                  | 1         | ug/l<br>ug/l |                                                                   | •                                             | -                | <mdl< td=""></mdl<>                  |  |
| 2-dibromo-3-chloropropane                           | 1         | ug/l         |                                                                   | -                                             | -                | <mdl< td=""></mdl<>                  |  |
| ,2-albromo-3-chloropropane<br>,2,4-trichlorobenzene | 1         | ug/l<br>ug/l |                                                                   | 0.4 1                                         |                  | <mdl< td=""></mdl<>                  |  |
| exachlorobutadiene                                  | 1         | ug/l<br>ug/l |                                                                   | 0.4                                           | -                | <mdl< td=""></mdl<>                  |  |
| ,2,3-trichlorobenzene                               | 1         |              | -                                                                 | 0.6                                           | -                | <mdl< td=""></mdl<>                  |  |
| ,z,o-tricritoropenzene                              |           | ug/l         |                                                                   | 0.4                                           | -                | <ividl< td=""></ividl<>              |  |

Arcadis

Where published criteria above are not available, Arcadis has derived GAC based on EA guidance and assumptions in line with current industry standards and standard CLEA inputs for a commercial land use.

| Notes                                                                          |                                                                                           |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| GAC                                                                            | Generic Assessment Criteria                                                               |
| DWS                                                                            | Drinking Water Standard                                                                   |
| EQS                                                                            | Environmental Quality Standard (Estuaries and Coastal Waters)                             |
| NVP                                                                            | Contaminant has low vapour phase in groundwater                                           |
| >SOL                                                                           | Target acceptable risk not exceeded at the theoretical solubility concentration           |
| NR                                                                             | No appropriate inhalation reference dose identified during review of toxicological data   |
| na                                                                             | Comprises multiple contaminant, no applicable GAC                                         |
| -                                                                              | No water quality standard identified as suitable for deriving generic assessment criteria |
| #                                                                              | No GAC for individua TPH fractions given that the compliacne criteria is for sum TPH      |
| <mdl< th=""><td>Concentration less then the method detection limit</td></mdl<> | Concentration less then the method detection limit                                        |
|                                                                                | Contaminant of Concern in excess of Human Health GAC                                      |
| 1.23                                                                           | Contaminant of Concern in excess of DWS                                                   |
| 1.23                                                                           | Contaminant of Concern in excess of EQS                                                   |
| 1.23                                                                           | Contaminant of Concern in excess of DWS and EQS                                           |
| *                                                                              | EC Surface Water Directive, 1975                                                          |
| **                                                                             | Water Supply (Water Quality) Regulation, 1989                                             |
| 4                                                                              |                                                                                           |

Based on values of 0.4μg/l for sum trichlorobenzene

Based on values of 10μg/l combined for TCE and PCE and 50μg/l combined for cis-DCE and trans-DCE

Total value for trihalomethanes (chloroform, bromoform, dibromochloromethane and bromodichloromethane).

Table F1: Groundwater GAC Protective of Human Health and Water Resources

| Contaminant of Concern           | MDL | Units        | Human Health<br>Inhalation GAC (On-<br>site Commerical<br>Worker) | EQS<br>(Estuaries and<br>Coastal Waters) | DWS | Maximum<br>Concentration<br>Measured |  |
|----------------------------------|-----|--------------|-------------------------------------------------------------------|------------------------------------------|-----|--------------------------------------|--|
| SVOCs                            |     |              |                                                                   |                                          |     |                                      |  |
| Phenol                           | 1   | ug/l         | >SOL                                                              | 7.7                                      | 7.7 | <mdl< td=""></mdl<>                  |  |
| Aniline                          | 1   | ug/l         | -                                                                 | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 2-Chlorophenol                   | 1   | ug/l         | -                                                                 | 50                                       | -   | <mdl< td=""></mdl<>                  |  |
| Benzyl Alcohol                   | 1   | ug/l         | -                                                                 | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 2-Methylphenol                   | 1   | ug/l         | -                                                                 | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| Bis(2-chloroisopropyl)ether      | 1   | ug/l         | -                                                                 | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 8&4-Methylphenol                 | 1   | ug/l         | -                                                                 | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| Bis(2-chloroethoxy)methane       | 1   | ug/l         | -                                                                 | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 2,4-Dimethylphenol               | 1   | ug/l         | -                                                                 | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 2,4-Dichlorophenol               | 1   | ug/l         | -                                                                 | 0.42                                     | -   | <mdl< td=""></mdl<>                  |  |
| I,2,4-Trichlorobenzene           | 1   | ug/l         | -                                                                 | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| I-Chloro-3-methylphenol          | 1   | ug/l         | -                                                                 | 40                                       | -   | <mdl< td=""></mdl<>                  |  |
| 2-Methylnaphthalene              | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| Hexachlorocyclopentadiene        | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 2,4,6-Trichlorophenol            | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 2,4,5-Trichlorophenol            | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 2-Chloronaphthalene              | 1   | ug/l         |                                                                   |                                          | -   | <mdl< td=""></mdl<>                  |  |
| 2-Nitroaniline                   | 1   | ug/l         |                                                                   |                                          |     | <mdl< td=""></mdl<>                  |  |
| 2.4-Dinitrotoluene               | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 3-Nitroaniline                   | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| I-Nitrophenol                    | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| Dibenzofuran                     | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 2,6-Dinitrotoluene               | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| 2,3,4,6-Tetrachlorophenol        | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| Diethylphthalate                 | 1   | ug/l         |                                                                   | -                                        | -   | <mdl< td=""></mdl<>                  |  |
| I-Chlorophenylphenylether        | 1   | ug/l         |                                                                   | -                                        |     | <mdl< td=""></mdl<>                  |  |
| I-Nitroaniline                   | 1   | ug/l         |                                                                   |                                          |     | <mdl< td=""></mdl<>                  |  |
| Diphenylamine                    | 1   | ug/l         |                                                                   |                                          |     | <mdl< td=""></mdl<>                  |  |
| I-Bromophenylphenylether         | 1   | ug/l         | -                                                                 |                                          |     | <mdl< td=""></mdl<>                  |  |
| Hexachlorobenzene                | 1   | ug/l         | -                                                                 |                                          |     | <mdl< td=""></mdl<>                  |  |
| Bis(2-ethylhexyl)ester           | 1   | ug/l         | -                                                                 |                                          |     | <mdl< td=""></mdl<>                  |  |
| Pentachlorophenol                | 1   | ug/l         |                                                                   |                                          |     | <mdl< td=""></mdl<>                  |  |
| Di-n-butylphthalate              | 1   | ug/l         |                                                                   |                                          |     | <mdl< td=""></mdl<>                  |  |
| Butylbenzylphthalate             | 1   | ug/l         |                                                                   |                                          |     | <mdl< td=""></mdl<>                  |  |
| Bis(2-ethylhexyl)phthalate       | 1   |              |                                                                   |                                          |     | <mdl< td=""></mdl<>                  |  |
| Di-n-octylphthalate              | 1   | ug/l<br>ug/l |                                                                   | •                                        |     | <mdl< td=""></mdl<>                  |  |
| ,4-Dinitrobenzene                | 1   | ug/l<br>ug/l |                                                                   | •                                        |     | <mdl< td=""></mdl<>                  |  |
| Dimethylphthalate                | 1   | ug/l         |                                                                   | •                                        |     | <mdl< td=""></mdl<>                  |  |
| ,3-Dinitrobenzene                | 1   |              |                                                                   | •                                        |     | <mdl< td=""></mdl<>                  |  |
| 2,3,5,6-Tetrachlorophenol        | 1   | ug/l         |                                                                   | •                                        | -   | <mdl< td=""></mdl<>                  |  |
| x,3,5,0- i etracniorophenoi      |     | ug/l         |                                                                   | •                                        | •   | <mdl< td=""></mdl<>                  |  |
|                                  | 1 1 | ug/l         | -                                                                 | •                                        | •   |                                      |  |
| Carbazole<br>I-Methylnaphthalene | 1   | ug/l<br>ug/l | -                                                                 | •                                        | -   | <mdl< td=""></mdl<>                  |  |

Where published criteria above are not available, Arcadis has derived GAC based on EA guidance and assumptions in line with current industry standards and standard CLEA inputs for a commercial land use. Arcadis

Notes

| Notes                                                                          |                                                                                           |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| GAC                                                                            | Generic Assessment Criteria                                                               |
| DWS                                                                            | Drinking Water Standard                                                                   |
| EQS                                                                            | Environmental Quality Standard (Estuaries and Coastal Waters)                             |
| NVP                                                                            | Contaminant has low vapour phase in groundwater                                           |
| >SOL                                                                           | Target acceptable risk not exceeded at the theoretical solubility concentration           |
| NR                                                                             | No appropriate inhalation reference dose identified during review of toxicological data   |
| na                                                                             | Comprises multiple contaminant, no applicable GAC                                         |
| -                                                                              | No water quality standard identified as suitable for deriving generic assessment criteria |
| #                                                                              | No GAC for individua TPH fractions given that the compliance criteria is for sum TPH      |
| <mdl< td=""><td>Concentration less then the method detection limit</td></mdl<> | Concentration less then the method detection limit                                        |
|                                                                                | Contaminant of Concern in excess of Human Health GAC                                      |
| 1.23                                                                           | Contaminant of Concern in excess of DWS                                                   |
| 1.23                                                                           | Contaminant of Concern in excess of EQS                                                   |
| 1.23                                                                           | Contaminant of Concern in excess of DWS and EQS                                           |
|                                                                                |                                                                                           |

Metals Processing Area Deep Soils and Controlled Waters; Former Steelworks, Redcar. Environmental Site Assessment

## **APPENDIX G**

**GQRA – Summary Surface Water Screen** 

| Contaminant of Concern                 | MDL       | Units        | EQS<br>(Estuaries and<br>Coastal Waters) | DWS       | Maximum<br>Concentration<br>Measured                                                                          | SLEMS_SW01   | SLEMS_SW02        | SLEMS_SW03 | SLEMS_SW04    | SLEMS_SW06 |
|----------------------------------------|-----------|--------------|------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------|---------------|------------|
| letals                                 |           |              |                                          |           |                                                                                                               |              |                   |            |               |            |
| luminium, Dissolved                    | 10        | ug/l         | -                                        | -         | 34                                                                                                            | 32           | 34                | 11         | 19            | 18         |
| ntimony, Dissolved                     | 0.17      | ug/l         | -                                        | 5         | 1                                                                                                             | 1            | 0.58              | 0.64       | 0.91          | 0.92       |
| rsenic, Dissolved                      | 0.16      | ug/l         | 25                                       | 10        | 3.7                                                                                                           | 3.7          | 1.3               | 2.3        | 1.7           | 1.8        |
| darium, Dissolved                      | 0.26      | ug/l         | -                                        | 700       | 43                                                                                                            | 43           | 40                | 25         | 31            | 32         |
| Beryllium, Dissolved                   | 0.1       | ug/l         | -                                        | -         | <mdl< td=""><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td></mdl<>      | < 0.1        | < 0.1             | < 0.1      | < 0.1         | < 0.1      |
| Boron, Dissolved                       | 12        | ug/l         | 7000                                     | 1000      | 400                                                                                                           | 330          | 310               | 400        | 370           | 310        |
| Cadmium, Dissolved Chromium, Dissolved | 0.03      | ug/l         | 0.2                                      | 5         | 0.1<br>2.1                                                                                                    | 0.08         | 0.04              | < 0.03     | 0.03          | 0.03       |
| Chromium, Dissolved                    | 0.25<br>7 | ug/l<br>ug/l | 0.6                                      | 50        | 8.6                                                                                                           | 2.1<br>< 7.0 | 1.5<br><b>8.6</b> | < 7.0      | 0.63<br>< 7.0 | < 7.0      |
| Copper, Dissolved                      | 0.4       | ug/l         | 3.76                                     | 2000      | 3.4                                                                                                           | 3.4          | 2.7               | 0.9        | 2.6           | 2.9        |
| ron, Dissolved                         | 5.5       | ug/l         | 1000                                     | 200       | 200                                                                                                           | 63           | 200               | 120        | 170           | 130        |
| ead, Dissolved                         | 0.09      | ug/l         | 1.3                                      | 10        | 1.5                                                                                                           | 0.36         | 1.5               | 0.91       | 1.1           | 0.77       |
| ∕lagnesium, Dissolved                  | 0.02      | mg/l         | -                                        | -         | 120                                                                                                           | 28           | 32                | 120        | 58            | 59         |
| Manganese, Dissolved                   | 0.22      | ug/l         | -                                        | 50        | 120                                                                                                           | 120          | 71                | 110        | 120           | 120        |
| Mercury, Dissolved                     | 0.01      | ug/l         | 0.07                                     | 1         | 0.02                                                                                                          | 0.02         | 0.01              | < 0.01     | < 0.01        | < 0.01     |
| Molybdenum, Dissolved                  | 1.1       | ug/l         | -                                        | 70        | 23                                                                                                            | 15           | 23                | 4.2        | 15            | 17         |
| Nickel, Dissolved                      | 0.5       | ug/l         | 8.6                                      | 20        | 8.6                                                                                                           | 2.6          | 6.3               | 1.8        | 8.6           | 8.4        |
| /anadium, Dissolved                    | 0.6       | ug/l         | 100                                      | -         | 22                                                                                                            | 22           | 5.5               | 0.7        | 2.3           | 2.2        |
| Zinc, Dissolved                        | 1.3       | ug/l         | 7.9                                      | 3000      | 17                                                                                                            | 12           | 13                | 17         | 15            | 13         |
| norganics                              |           |              |                                          |           |                                                                                                               |              |                   |            |               |            |
| oH                                     | -         | рН           | 6 - 8.5                                  | -         | 8.0                                                                                                           | 7.9          | 7.9               | 8          | 8             | 8          |
| Cyanide, Total                         | 40        | ug/l         | 1                                        | 50        | <mdl< td=""><td>&lt; 40</td><td>&lt; 40</td><td>&lt; 40</td><td>&lt; 40</td><td>&lt; 40</td></mdl<>           | < 40         | < 40              | < 40       | < 40          | < 40       |
| Cyanide, Free                          | 20        | ug/l         | •                                        | -         | <mdl< td=""><td>&lt; 20</td><td>&lt; 20</td><td>&lt; 20</td><td>&lt; 20</td><td>&lt; 20</td></mdl<>           | < 20         | < 20              | < 20       | < 20          | < 20       |
| Thiocyanate                            | 20        | ug/l         | •                                        | -         | <mdl< td=""><td>&lt; 20</td><td>&lt; 20</td><td>&lt; 20</td><td>&lt; 20</td><td>&lt; 20</td></mdl<>           | < 20         | < 20              | < 20       | < 20          | < 20       |
| Ammoniacal Nitrogen as N               | 0.015     | mg/l         | •                                        | 0.5       | 0.2                                                                                                           | 0.14         | 0.11              | 0.088      | 0.22          | < 0.015    |
| Chloride                               | 0.1       | mg/l         | •                                        | <u> </u>  | 260                                                                                                           | 150          | 260               | 86         | 180           | 220        |
| Silicate as SiO2<br>Sulphate as SO4    | 0.1       | mg/l         | •                                        | -         | 12<br>390                                                                                                     | 12<br>390    | 7.7<br>62         | 11<br>110  | 8.4<br>71     | 8.1<br>71  |
| Sulphur Free                           | 84        | mg/l<br>ug/l | -                                        |           | <mdl< td=""><td>&lt; 84</td><td>&lt; 84</td><td>&lt; 84</td><td>&lt; 84</td><td>&lt; 84</td></mdl<>           | < 84         | < 84              | < 84       | < 84          | < 84       |
| Petroleum Hydrocarbons                 | - 04      | ug/i         | -                                        |           | IVIDE                                                                                                         | - 04         | 104               | - 04       | - 04          | - 04       |
| Aliphatic C5-C6                        | 0.1       | ug/l         | #                                        | #         | <mdl< td=""><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td></mdl<>      | < 0.1        | < 0.1             | < 0.1      | < 0.1         | < 0.1      |
| Aliphatic C6-C8                        | 0.1       | ug/l         | #                                        | #         | <mdl< td=""><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td></mdl<>      | < 0.1        | < 0.1             | < 0.1      | < 0.1         | < 0.1      |
| Aliphatic C8-C10                       | 0.1       | ug/l         | #                                        | #         | <mdl< td=""><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td></mdl<>      | < 0.1        | < 0.1             | < 0.1      | < 0.1         | < 0.1      |
| Aliphatic C10-C12                      | 1         | ug/l         | #                                        | #         | 7.7                                                                                                           | < 1.0        | 6.3               | < 1.0      | 7.7           | 6.8        |
| Aliphatic C12-C16                      | 1         | ug/l         | #                                        | #         | 27                                                                                                            | < 1.0        | 27                | < 1.0      | 1.7           | 3.7        |
| Aliphatic C16-C21                      | 1         | ug/l         | #                                        | #         | 300                                                                                                           | < 1.0        | 300               | < 1.0      | 9             | 18         |
| Aliphatic C21-C35                      | 1         | ug/l         | _ #                                      | #         | 4,700                                                                                                         | < 1.0        | 4700              | < 1.0      | 160           | 290        |
| Aromatic C5-C7                         | 0.1       | ug/l         | 8                                        | 1         | <mdl< td=""><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td></mdl<>      | < 0.1        | < 0.1             | < 0.1      | < 0.1         | < 0.1      |
| Aromatic C7-C8                         | 0.1       | ug/l         | 74                                       | 700       | <mdl< td=""><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td></mdl<>      | < 0.1        | < 0.1             | < 0.1      | < 0.1         | < 0.1      |
| Aromatic C8-C10                        | 0.1       | ug/l         | #                                        | #         | <mdl< td=""><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td><td>&lt; 0.1</td></mdl<>      | < 0.1        | < 0.1             | < 0.1      | < 0.1         | < 0.1      |
| Aromatic C10-C12                       | 1         | ug/l         | #                                        | #         | 1.6                                                                                                           | < 1.0        | 1.6               | < 1.0      | < 1.0         | < 1.0      |
| Aromatic C12-C16                       | 1         | ug/l         | #                                        | #         | 22                                                                                                            | < 1.0        | 22                | < 1.0      | < 1.0         | 3.4        |
| Aromatic C16-C21                       | 1         | ug/l         | # #                                      | #         | 170                                                                                                           | < 1.0        | 170               | < 1.0      | < 1.0         | 7.3        |
| Aromatic C21-C35                       | 1         | ug/l         | #<br>50*                                 | #<br>10** | 1,800                                                                                                         | < 1.0        | 1800              | < 1.0      | < 1.0<br>180  | 94<br>420  |
| TPH Ali/Aro Total  PAHs                | 10        | ug/l         | <b>5</b> 0"                              | 10        | 7,000                                                                                                         | < 10         | 7,000             | < 10       | 100           | 420        |
| PAHS Naphthalene                       | 0.05      | ug/l         | 2                                        | 2         | 0.05                                                                                                          | < 0.05       | 0.05              | < 0.05     | < 0.05        | < 0.05     |
| Napritrialerie<br>Acenaphthylene       | 0.03      | ug/l         | -                                        | -         | 0.03                                                                                                          | 0.03         | < 0.05            | 0.01       | < 0.05        | < 0.05     |
| Acenaphthene                           | 0.01      | ug/l         | -                                        | -         | 0.03                                                                                                          | 0.03         | < 0.05            | < 0.01     | < 0.01        | < 0.01     |
| Fluorene                               | 0.01      | ug/l         |                                          | -         | 0.04                                                                                                          | 0.04         | < 0.05            | 0.01       | < 0.01        | < 0.01     |
| Phenanthrene                           | 0.01      | ug/l         |                                          | -         | 0.08                                                                                                          | 0.03         | 0.08              | 0.01       | < 0.01        | 0.03       |
| Anthracene                             | 0.01      | ug/l         | 0.1                                      | -         | 0.04                                                                                                          | 0.04         | < 0.05            | 0.02       | < 0.01        | < 0.01     |
| Fluoranthene                           | 0.01      | ug/l         | 0.0063                                   | -         | 0.13                                                                                                          | 0.13         | < 0.05            | 0.07       | 0.02          | 0.09       |
| Pyrene                                 | 0.01      | ug/l         | -                                        | -         | 0.1                                                                                                           | 0.1          | < 0.05            | 0.06       | 0.02          | 0.08       |
| Benzo(a)anthracene                     | 0.01      | ug/l         | -                                        | -         | 0.06                                                                                                          | 0.05         | < 0.05            | 0.03       | < 0.01        | 0.06       |
| Chrysene                               | 0.01      | ug/l         | -                                        | -         | 0.15                                                                                                          | 0.06         | < 0.05            | 0.15       | < 0.01        | 0.06       |
| Benzo(b)fluoranthene                   | 0.01      | ug/l         | 0.017                                    | 0.025     | 0.1                                                                                                           | 0.1          | < 0.05            | 0.04       | < 0.01        | 0.08       |
| Benzo(k)fluoranthene                   | 0.01      | ug/l         | 0.017                                    | 0.025     | 0.04                                                                                                          | 0.04         | < 0.05            | 0.02       | < 0.01        | 0.03       |
| Benzo(a)pyrene                         | 0.01      | ug/l         | 0.027                                    | 0.01      | 0.05                                                                                                          | 0.05         | < 0.05            | 0.02       | < 0.01        | 0.05       |
| ndeno(1,2,3-c,d)pyrene                 | 0.01      | ug/l         | -                                        | 0.025     | 0.05                                                                                                          | 0.05         | < 0.05            | 0.02       | < 0.01        | 0.04       |
| Dibenzo(a,h)anthracene                 | 0.01      | ug/l         | -                                        | -         | <mdl< td=""><td>&lt; 0.01</td><td>&lt; 0.05</td><td>&lt; 0.01</td><td>&lt; 0.01</td><td>&lt; 0.01</td></mdl<> | < 0.01       | < 0.05            | < 0.01     | < 0.01        | < 0.01     |
| Benzo(g,h,i)perylene                   | 0.01      | ug/l         | 0.00082                                  | 0.025     | 0.06                                                                                                          | 0.06         | < 0.05            | 0.02       | < 0.01        | 0.04       |
| PAH Total                              | 0.2       | ug/l         | n                                        | a         | 0.82                                                                                                          | 0.82         | < 0.80            | 0.48       | < 0.20        | 0.58       |
| Phenols                                |           |              |                                          |           |                                                                                                               |              |                   |            |               |            |
| Phenol - Monohydric                    | 100       | ug/l         | 7.7                                      | 7.7       | <mdl< td=""><td>&lt; 100</td><td>&lt; 100</td><td>&lt; 100</td><td>&lt; 100</td><td>&lt; 100</td></mdl<>      | < 100        | < 100             | < 100      | < 100         | < 100      |
| Notes                                  |           |              |                                          |           |                                                                                                               |              |                   |            |               |            |

GAC Generic Assessment Criteria DWS Drinking Water Standard EQS Environmental Quality Standard (Estuaries and Coastal Waters) NVP Contaminant has low vapour phase in groundwater >SOL Target acceptable risk not exceeded at the theoretical solubility concentration No appropriate inhalation reference dose identified during review of toxicological data NR Comprises multiple contaminant, no applicable GAC na No water quality standard identified as suitable for deriving generic assessment criteria No GAC for individua TPH fractions given that the compliacne criteria is for sum TPH # <MDL Concentration less then the method detection limit Contaminant of Concern in excess of Human Health GAC 1.23 Contaminant of Concern in excess of DWS 1.23 Contaminant of Concern in excess of EQS

1.23 Contaminant of Concern in excess of DWS and EQS EC Surface Water Directive, 1975 Water Supply (Water Quality) Regulation, 1989

Notes

| Table G1: Leachate  | GAC Protective  | e of Human Heal       | h and Water Resources      |
|---------------------|-----------------|-----------------------|----------------------------|
| Table of. Leadingto | C/IC/I/OLCOLIVI | or i idilidii i iodii | ii aiia vvatoi i toooaiooo |

| Contaminant of Concern                       | MDL | Units | EQS<br>(Estuaries and<br>Coastal Waters) | DWS              | Maximum<br>Concentration<br>Measured                                                                                                                  | SLEMS_SW01 | SLEMS_SW02 | SLEMS_SW03 | SLEMS_SW04 | SLEMS_SW06 |
|----------------------------------------------|-----|-------|------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|
| OCs                                          |     |       |                                          |                  | 140                                                                                                                                                   |            |            |            |            |            |
| chlorodifluoromethane                        | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| loromethane                                  | 1   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| nyl Chloride                                 | 1   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| omomethane                                   | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| lloroethane                                  | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1<br/>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                             | < 1        | < 1<br>< 1 | < 1        | < 1        | < 1        |
| chlorofluoromethane                          | 1   | ug/l  | -                                        | - 140            | <mdl< td=""><td>&lt; 1</td><td></td><td>&lt; 1</td><td>&lt; 1</td><td>&lt;1</td></mdl<>                                                               | < 1        |            | < 1        | < 1        | <1         |
| I-dichloroethylene                           | 1   | ug/l  | -                                        | 140              | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| ethylene Chloride                            | 27  | ug/l  | -                                        | - 2              | <mdl<br><mdl< td=""><td>&lt; 27</td><td>&lt; 27</td><td>&lt; 27</td><td>&lt; 27</td><td>&lt; 27</td></mdl<></mdl<br>                                  | < 27       | < 27       | < 27       | < 27       | < 27       |
| ans-1,2-dichloroethylene<br>I-dichloroethane | 1   | ug/l  | -                                        | 25 <sup>2</sup>  | <mdl< td=""><td>&lt; 1<br/>&lt; 1</td><td>&lt; 1<br/>&lt; 1</td><td>&lt; 1<br/>&lt; 1</td><td>&lt; 1<br/>&lt; 1</td><td>&lt; 1<br/>&lt; 1</td></mdl<> | < 1<br>< 1 |
|                                              | 1   | ug/l  | -                                        | 25 <sup>2</sup>  | <mdl< td=""><td></td><td></td><td></td><td></td><td></td></mdl<>                                                                                      |            |            |            |            |            |
| s-1,2-dichloroethylene                       | 1   | ug/l  | -                                        |                  |                                                                                                                                                       | < 1        | < 1        | < 1        | < 1        | < 1        |
| 2-dichloropropane                            | 2   | ug/l  | -                                        | <u> </u>         | <mdl< td=""><td>&lt; 2</td><td>&lt; 2</td><td>&lt; 2</td><td>&lt; 2</td><td>&lt; 2</td></mdl<>                                                        | < 2        | < 2        | < 2        | < 2        | < 2        |
| omochloromethane                             | 4   | ug/l  | -                                        | - 400 3          | <mdl< td=""><td>&lt; 4</td><td>&lt; 4</td><td>&lt; 4</td><td>&lt; 4</td><td>&lt; 4</td></mdl<>                                                        | < 4        | < 4        | < 4        | < 4        | < 4        |
| lloroform                                    | 1   | ug/l  | 2.5                                      | 100 <sup>3</sup> | 2.0                                                                                                                                                   | 1          | 2          | < 1        | < 1        | <1         |
| l,1-trichloroethane                          | 1   | ug/l  | 100                                      | 2000             | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt;1</td></mdl<>                                                         | < 1        | < 1        | < 1        | < 1        | <1         |
| I-dichloropropene                            | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt;1</td></mdl<>                                                         | < 1        | < 1        | < 1        | < 1        | <1         |
| rbon tetrachloride                           | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt;1</td></mdl<>                                                         | < 1        | < 1        | < 1        | < 1        | <1         |
| nzene                                        | 1   | ug/l  | 8                                        | 1                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt;1</td></mdl<>                                                         | < 1        | < 1        | < 1        | < 1        | <1         |
| 2-dichloroethane                             | 1   | ug/l  | 10                                       | 3 - 2            | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| chloroethylene                               | 1   | ug/l  | 10                                       | 5 <sup>2</sup>   | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 2-dichloropropane                            | 1   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| promomethane                                 | 1   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| omodichloromethane                           | 4   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 4</td><td>&lt; 4</td><td>&lt; 4</td><td>&lt; 4</td><td>&lt; 4</td></mdl<>                                                        | < 4        | < 4        | < 4        | < 4        | < 4        |
| -1,3-dichloropropene                         | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| luene                                        | 1   | ug/l  | 74                                       | 700              | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| ns-1,3-dichloropropene                       | 1   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| I,2-trichloroethane                          | 1   | ug/l  | 300                                      | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| trachloroethylene                            | 1   | ug/l  | 10                                       | 5 <sup>2</sup>   | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 3-dichloropropane                            | 1   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| promochloromethane                           | 1   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 2-dibromoethane                              | 1   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| llorobenzene                                 | 1   | ug/l  | -                                        | 100              | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| I,1,2-tetrachloroethane                      | 1   | ug/l  | •                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| nylbenzene                                   | 1   | ug/l  | -                                        | 300              | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| -p-Xylene                                    | 2   | ug/l  | - 30                                     | 500              | <mdl< td=""><td>&lt; 2</td><td>&lt; 2</td><td>&lt; 2</td><td>&lt; 2</td><td>&lt; 2</td></mdl<>                                                        | < 2        | < 2        | < 2        | < 2        | < 2        |
| Kylene                                       | 1   | ug/l  |                                          |                  | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| yrene                                        | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| omoform                                      | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| propylbenzene                                | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 1,2,2-tetrachloroethane                      | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| omobenzene                                   | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 2,3-trichloropropane                         | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| propylbenzene                                | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| chlorotoluene                                | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 3,5-trimethylbenzene                         | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| chlorotoluene                                | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| rt-butylbenzene                              | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 2,4-trimethylbenzene                         | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| c-butylbenzene                               | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| sopropyltoluene                              | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 3-dichlorobenzene                            | 2   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 2</td><td>&lt; 2</td><td>&lt; 2</td><td>&lt; 2</td><td>&lt; 2</td></mdl<>                                                        | < 2        | < 2        | < 2        | < 2        | < 2        |
| 1-dichlorobenzene                            | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| outylbenzene                                 | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 2-dichlorobenzene                            | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 2-dibromo-3-chloropropane                    | 1   | ug/l  | -                                        | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| 2,4-trichlorobenzene                         | 1   | ug/l  | 0.4 1                                    | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
|                                              | 1   | ug/l  | 0.6                                      | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |
| xachlorobutadiene                            |     |       |                                          |                  |                                                                                                                                                       |            |            |            |            |            |
| exachlorobutadiene<br>2,3-trichlorobenzene   | 1   | ug/l  | 0.4 1                                    | -                | <mdl< td=""><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td><td>&lt; 1</td></mdl<>                                                        | < 1        | < 1        | < 1        | < 1        | < 1        |

| GAC                                                                            | Generic Assessment Criteria                                                              |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| DWS                                                                            | Drinking Water Standard                                                                  |
| EQS                                                                            | Environmental Quality Standard (Estuaries and Coastal Waters)                            |
| NVP                                                                            | Contaminant has low vapour phase in groundwater                                          |
| >SOL                                                                           | Target acceptable risk not exceeded at the theoretical solubility concentration          |
| NR                                                                             | No appropriate inhalation reference dose identified during review of toxicological data  |
| na                                                                             | Comprises multiple contaminant, no applicable GAC                                        |
| -                                                                              | No water quality standard identified as suitable for deriving generic assessment criteri |
| #                                                                              | No GAC for individua TPH fractions given that the compliance criteria is for sum TPH     |
| <mdl< td=""><td>Concentration less then the method detection limit</td></mdl<> | Concentration less then the method detection limit                                       |
|                                                                                | Contaminant of Concern in excess of Human Health GAC                                     |
| 1.23                                                                           | Contaminant of Concern in excess of DWS                                                  |
| 1.23                                                                           | Contaminant of Concern in excess of EQS                                                  |
| 1.23                                                                           | Contaminant of Concern in excess of DWS and EQS                                          |
| *                                                                              | EC Surface Water Directive, 1975                                                         |
| **                                                                             | Water Supply (Water Quality) Regulation, 1989                                            |
|                                                                                |                                                                                          |

Table G1: Leachate GAC Protective of Human Health and Water Resources

| Contaminant of Concern                    | MDL | Units | EQS<br>(Estuaries and<br>Coastal Waters) | DWS      | Maximum<br>Concentration<br>Measured                                                                     | SLEMS_SW01 | SLEMS_SW02 | SLEMS_SW03 | SLEMS_SW04 | SLEMS_SW06 |
|-------------------------------------------|-----|-------|------------------------------------------|----------|----------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|
| SVOCs                                     |     |       |                                          |          |                                                                                                          |            |            |            |            |            |
| Phenol                                    | 1   | ug/l  | 7.7                                      | 7.7      | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| niline                                    | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| -Chlorophenol                             | 1   | ug/l  | 50                                       | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Benzyl Alcohol                            | 1   | ug/l  | -                                        | -        | 2.6                                                                                                      | < 2.0      | < 2.0      | 2.6        | < 1.0      | < 1.0      |
| -Methylphenol                             | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Bis(2-chloroisopropyl)ether               | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| &4-Methylphenol                           | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Sis(2-chloroethoxy)methane                | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| ,4-Dimethylphenol                         | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| 2,4-Dichlorophenol                        | 1   | ug/l  | 0.42                                     | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| ,2,4-Trichlorobenzene                     | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| -Chloro-3-methylphenol                    | 1   | ug/l  | 40                                       | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| 2-Methylnaphthalene                       | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| lexachlorocyclopentadiene                 | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| 4,4,6-Trichlorophenol                     | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| ,4,5-Trichlorophenol                      | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| -Chloronaphthalene                        | 1   | ug/l  |                                          |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| -Nitroaniline                             | 1   | ug/l  |                                          | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| ,4-Dinitrotoluene                         | 1   | ug/l  |                                          |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| -Nitroaniline                             | 1   | ug/l  |                                          |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| -Nitrophenol                              | 1   | ug/l  | -                                        |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Dibenzofuran                              | 1   | ug/l  |                                          |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| .6-Dinitrotoluene                         | 1   | ug/l  |                                          |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| 2,3,4,6-Tetrachlorophenol                 | 1   | ug/l  |                                          |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Diethylphthalate                          | 1   | ug/l  | _                                        |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| l-Chlorophenylphenylether                 | 1   | ug/l  |                                          |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| l-Nitroaniline                            | 1   | ug/l  | _                                        |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Diphenylamine                             | 1   | ug/l  |                                          |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| I-Bromophenylphenylether                  | 1   | ug/l  | -                                        | <u> </u> | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Hexachlorobenzene                         | 1   | ug/l  | -                                        |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Bis(2-ethylhexyl)ester                    | 1   | ug/l  | -                                        |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Pentachlorophenol                         | 1   | ug/l  | -                                        | <u> </u> | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| i-entachiorophenoi<br>Di-n-butylphthalate | 1   | ug/l  |                                          |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Butylbenzylphthalate                      | 1   |       | •                                        |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
|                                           |     | ug/l  | •                                        |          | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td></td></mdl<>         | < 2.0      | < 2.0      | < 2.0      | < 1.0      |            |
| Sis(2-ethylhexyl)phthalate                | 1   | ug/l  | -                                        | <u>-</u> | <mdl< td=""><td></td><td></td><td></td><td></td><td>&lt; 1.0</td></mdl<>                                 |            |            |            |            | < 1.0      |
| 0i-n-octylphthalate                       | 1   | ug/l  | -                                        | -        |                                                                                                          | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| ,4-Dinitrobenzene                         | 1   | ug/l  | •                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Dimethylphthalate                         | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| ,3-Dinitrobenzene                         | 1   | ug/l  | •                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| 2,3,5,6-Tetrachlorophenol                 | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Azobenzene                                | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| Carbazole                                 | 1   | ug/l  | -                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |
| -Methylnaphthalene<br>Notes               | 1   | ug/l  | •                                        | -        | <mdl< td=""><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 2.0</td><td>&lt; 1.0</td><td>&lt; 1.0</td></mdl<> | < 2.0      | < 2.0      | < 2.0      | < 1.0      | < 1.0      |

| Notes |                                                                                           |
|-------|-------------------------------------------------------------------------------------------|
| GAC   | Generic Assessment Criteria                                                               |
| DWS   | Drinking Water Standard                                                                   |
| EQS   | Environmental Quality Standard (Estuaries and Coastal Waters)                             |
| NVP   | Contaminant has low vapour phase in groundwater                                           |
| >SOL  | Target acceptable risk not exceeded at the theoretical solubility concentration           |
| NR    | No appropriate inhalation reference dose identified during review of toxicological data   |
| na    | Comprises multiple contaminant, no applicable GAC                                         |
| -     | No water quality standard identified as suitable for deriving generic assessment criteria |
| #     | No GAC for individua TPH fractions given that the compliance criteria is for sum TPH      |
| <0.1  | Concentration less then the method detection limit                                        |
|       | Contaminant of Concern in excess of Human Health GAC                                      |
| 1.23  | Contaminant of Concern in excess of DWS                                                   |
| 1.23  | Contaminant of Concern in excess of EQS                                                   |
| 1.23  | Contaminant of Concern in excess of DWS and EQS                                           |
| *     | EC Surface Water Directive, 1975                                                          |
| **    | Water Supply (Water Quality) Regulation, 1989                                             |





#### Arcadis (UK) Limited

One Whitehall Riverside Leeds LS1 4BN United Kingdom

T: +44 (0)113 284 5333

arcadis.com