

			lah N-	4 6 7 4 4 6 7	4074400	4 674 467	4 674 465	4074400
			Lab No		1671486 PRAIRIE_AUK_	1671487 PRAIRIE ALIK	1671488 PRAIRIE ALIK	1671489 PRAIRIE ALIK
		Sa	ample ID		BH103	BH104		BH107
			Depth	1.10-7.20	2.25-8.50	6.40-18.50	4.60-11.00	3.16-8.00
			Other ID	1.10 /.20	100	100	100	100
			ple Type	EW	EW	EW	EW	EW
			ing Date		05/05/2020	05/05/2020	05/05/2020	05/05/2020
		-	ing Time		n/s	n/s		n/s
Test	Method	LOD	Units	11/3	175	173	11/3	175
VOCs	method	200	omes					
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	- 1	ug/l	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	<1	< 1
Bromomethane	DETSC 3432	- 1	ug/l	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	- 1	ug/l	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	- 1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	<1	< 1	<1	<1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	- 1	ug/l	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4
cis-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
trans-1,3-dichloropropene	DETSC 3432	1	ug/l		< 1	< 1	< 1	< 1
1,1,2-trichloroethane	DETSC 3432	1	ug/l		< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,3-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1		< 1
1,2-dibromoethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,1,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Ethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
m+p-Xylene	DETSC 3432	2	ug/l	< 2	< 2	< 2		< 2
o-Xylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Bromoform	DETSC 3432	1	ug/l	<1	< 1	<1		< 1
Isopropylbenzene	DETSC 3432	1	ug/l	<1		<1		< 1
торгорушениене	DL13C 3432	T	ug/I	<1	< 1	<1	< 1	< 1

Sam SamTestMethod1,1,2,2-tetrachloroethaneDETSC 3432BromobenzeneDETSC 34321,2,3-trichloropropaneDETSC 3432n-propylbenzeneDETSC 34322-chlorotolueneDETSC 34321,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	Lab No Sample ID Depth Other ID mple Type pling Date pling Time D Units 1 ug/l 1 ug/l	PRAIRIE_AUK_ BH102 1.10-7.20 100 EW 05/05/2020 n/s	PRAIRIE_AUK_ BH103 2.25-8.50 100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1671487 PRAIRIE_AUK_ BH104 6.40-18.50 100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	PRAIRIE_AUK_ BH105 4.60-11.00 100 EW 05/05/2020	1671489 PRAIRIE_AUK_ BH107 3.16-8.00 100 EW 05/05/2020 n/s < 1 < 1 < 1 < 1 < 1 < 1
San SamTestMethod1,1,2,2-tetrachloroethaneDETSC 3432BromobenzeneDETSC 34321,2,3-trichloropropaneDETSC 3432n-propylbenzeneDETSC 34322-chlorotolueneDETSC 34321,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 34321,2,4-trimethylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	Depth Other ID mple Type pling Date pling Time D Units 1 ug/l 1 ug/l	BH102 1.10-7.20 100 EW 05/05/2020 n/s 	BH103 2.25-8.50 100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	BH104 6.40-18.50 100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1	BH105 4.60-11.00 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1	BH107 3.16-8.00 100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1
San SamTestMethod1,1,2,2-tetrachloroethaneDETSC 3432BromobenzeneDETSC 34321,2,3-trichloropropaneDETSC 3432n-propylbenzeneDETSC 34322-chlorotolueneDETSC 34321,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	Depth Other ID mple Type pling Date pling Time D Units 1 ug/l 1 ug/l	1.10-7.20 100 EW 05/05/2020 n/s <pre></pre>	2.25-8.50 100 EW 05/05/2020 n/s < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	6.40-18.50 100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1	4.60-11.00 100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1	3.16-8.00 100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1
Sam SamTestMethodLOI1,1,2,2-tetrachloroethaneDETSC 34321BromobenzeneDETSC 343211,2,3-trichloropropaneDETSC 34321n-propylbenzeneDETSC 343212-chlorotolueneDETSC 343211,3,5-trimethylbenzeneDETSC 343214-chlorotolueneDETSC 34321Tert-butylbenzeneDETSC 343211,2,4-trimethylbenzeneDETSC 34321	Other ID mple Type pling Date pling Time 1 ug/l 1 ug/l	100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	100 EW 05/05/2020 n/s < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1	100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1	100 EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1
Sam SamTestMethodLOI1,1,2,2-tetrachloroethaneDETSC 34321BromobenzeneDETSC 343211,2,3-trichloropropaneDETSC 34321n-propylbenzeneDETSC 343212-chlorotolueneDETSC 343211,3,5-trimethylbenzeneDETSC 343214-chlorotolueneDETSC 34321Tert-butylbenzeneDETSC 343211,2,4-trimethylbenzeneDETSC 34321	Imple Type pling Date pling Time D Units 1 ug/l 1 ug/l	EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	EW 05/05/2020 <pre></pre>	EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1	EW 05/05/2020 n/s <1 <1 <1 <1 <1 <1
Sam SamTestMethodLOI1,1,2,2-tetrachloroethaneDETSC 34321BromobenzeneDETSC 343211,2,3-trichloropropaneDETSC 34321n-propylbenzeneDETSC 343212-chlorotolueneDETSC 343211,3,5-trimethylbenzeneDETSC 343214-chlorotolueneDETSC 34321Tert-butylbenzeneDETSC 343211,2,4-trimethylbenzeneDETSC 34321	pling Date pling Time D Units 1 ug/l	05/05/2020 n/s <pre></pre>	05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1 <1	05/05/2020 n/s <1 <1 <1 <1 <1 <1 <1 <1	05/05/2020 n/s < 1 < 1 < 1 < 1 < 1	05/05/2020 n/s < 1 < 1 < 1 < 1 < 1 < 1
TestMethodLOI1,1,2,2-tetrachloroethaneDETSC 3432BromobenzeneDETSC 34321,2,3-trichloropropaneDETSC 3432n-propylbenzeneDETSC 34322-chlorotolueneDETSC 34321,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	pling Time D Units 1 ug/l	n/s	n/s <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	n/s <1 <1 <1 <1 <1 <1 <1	n/s <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	n/s <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
TestMethodLOI1,1,2,2-tetrachloroethaneDETSC 34321BromobenzeneDETSC 343211,2,3-trichloropropaneDETSC 34321n-propylbenzeneDETSC 343212-chlorotolueneDETSC 343211,3,5-trimethylbenzeneDETSC 343214-chlorotolueneDETSC 34321Tert-butylbenzeneDETSC 343211,2,4-trimethylbenzeneDETSC 34321	D Units 1 ug/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1
1,1,2,2-tetrachloroethaneDETSC 3432BromobenzeneDETSC 34321,2,3-trichloropropaneDETSC 3432n-propylbenzeneDETSC 34322-chlorotolueneDETSC 34321,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	1 ug/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1	< 1 < 1 < 1
BromobenzeneDETSC 34321,2,3-trichloropropaneDETSC 3432n-propylbenzeneDETSC 34322-chlorotolueneDETSC 34321,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l	<1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1	< 1 < 1 < 1
1,2,3-trichloropropaneDETSC 3432n-propylbenzeneDETSC 34322-chlorotolueneDETSC 34321,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l	<1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1	< 1 < 1	< 1 < 1
n-propylbenzeneDETSC 34322-chlorotolueneDETSC 34321,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l	<1 <1 <1	< 1 < 1	< 1 < 1		
2-chlorotolueneDETSC 34321,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l	< 1 < 1	< 1		< 1	
1,3,5-trimethylbenzeneDETSC 34324-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	1 ug/l 1 ug/l 1 ug/l 1 ug/l 1 ug/l	< 1 < 1	< 1			< 1
4-chlorotolueneDETSC 3432Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	1 ug/l 1 ug/l 1 ug/l	< 1			< 1	< 1
Tert-butylbenzeneDETSC 34321,2,4-trimethylbenzeneDETSC 3432	1 ug/l 1 ug/l		< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene DETSC 3432	1 ug/l	· · · ·	< 1	< 1	< 1	< 1
		< 1	< 1	< 1	< 1	< 1
	TI UŠ/I	< 1	< 1	< 1	< 1	< 1
	1 ug/l	< 1	< 1	< 1	< 1	< 1
	2 ug/l	< 2	< 2	< 2	< 2	< 2
,	1 ug/l	< 1	< 1	< 1	< 1	< 1
	1 ug/l	< 1	< 1	< 1	< 1	< 1
· ·	1 ug/l	< 1	< 1	< 1	< 1	< 1
	1 ug/l	< 1	< 1	< 1	< 1	< 1
	1 ug/l	<1	< 1	<1	< 1	< 1
	1 ug/l	< 1	< 1	< 1	< 1	< 1
	1 ug/l	< 1	< 1	< 1	< 1	< 1
	1 ug/l		< 1	< 1	< 1	< 1
SVOCs						
	1 ug/l	1				
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					
	1 ug/l					

			Lab No	1671485	1671486	1671487	1671488	1671489
					PRAIRIE_AUK_			PRAIRIE_AUK_
		Sa	ample ID	BH102	BH103	BH104	BH105	BH107
			Depth	1.10-7.20	2.25-8.50	6.40-18.50	4.60-11.00	3.16-8.00
			Other ID	100	100	100	100	100
			ple Type			EW	EW	EW
		-	ling Date			05/05/2020		05/05/2020
		-	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	-				
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l					
3-Nitroaniline	DETSC 3434*	1	ug/l					
4-Nitrophenol	DETSC 3434*	1	ug/l					
Dibenzofuran	DETSC 3434*	1	ug/l					
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l					
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l					
Diethylphthalate	DETSC 3434*	1	ug/l					
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l					
4-Nitroaniline	DETSC 3434*	1	ug/l					
Diphenylamine	DETSC 3434*	1	ug/l					
4-Bromophenylphenylether	DETSC 3434*	1	ug/l					
Hexachlorobenzene	DETSC 3434*	1	ug/l					
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l					
Pentachlorophenol	DETSC 3434*	1	ug/l					
Di-n-butylphthalate	DETSC 3434*	1	ug/l					
Butylbenzylphthalate	DETSC 3434*	1	ug/l					
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l					
Di-n-octylphthalate	DETSC 3434*	1	ug/l					
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l					
Dimethylphthalate	DETSC 3434*	1	ug/l					
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l					
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l					
Azobenzene	DETSC 3434*	1	ug/l					
Carbazole	DETSC 3434*	1	ug/l					
1-Methylnaphthalene	DETSC 3434*	1	ug/l					

			Lab No	1671490	1671899	1671900	1671901	1671902
				PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		Sa	ample ID	BH109	BH101	BH101	BH106	BH108
			Depth	5.44-11.80	2.00-10.00	3.00-16.50	3.94-10.00	2.20-6.00
		(Other ID	100	100	100	100	100
		Sam	ple Type	EW	EW	EW	EW	EW
		Sampl	ing Date	05/05/2020	06/05/2020	06/05/2020	06/05/2020	06/05/2020
		Sampli	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
VOCs								
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichloroethane	DETSC 3432	1	ug/l	7	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4
cis-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	ug/l	48	< 1	< 1	< 1	< 1
trans-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,2-trichloroethane	DETSC 3432	1	ug/l		< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,3-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dibromoethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,1,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Ethylbenzene	DETSC 3432	1	ug/l	11	< 1	< 1	< 1	< 1
m+p-Xylene	DETSC 3432	2	ug/l	77	< 2	< 2	< 2	< 2
o-Xylene	DETSC 3432	1	ug/l	30	< 1	<1	< 1	< 1
Styrene	DETSC 3432	1	ug/l	4	< 1	<1	<1	<1
Bromoform	DETSC 3432	1	ug/l	< 1	< 1	<1	<1	<1
Isopropylbenzene	DETSC 3432 DETSC 3432	1			< 1	<1	< 1	< 1
порторушениене	DE13C 3432	T	ug/l	1	< 1	< 1	< 1	< 1

contract rule Frame site Ground			Lab No	1671490	1671899	1671900	1671901	1671902
				PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		Sa	ample ID		BH101	BH101	BH106	BH108
			Depth		2.00-10.00	3.00-16.50	3.94-10.00	2.20-6.00
			Other ID		100	100	100	100
			ple Type		EW	EW	EW	EW
		-	ing Date		06/05/2020	06/05/2020	06/05/2020	06/05/2020
		-	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
1,1,2,2-tetrachloroethane	DETSC 3432	1	ug/l		< 1	< 1	< 1	< 1
Bromobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2,3-trichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
n-propylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
2-chlorotoluene	DETSC 3432	1	ug/l	2	< 1	< 1	< 1	< 1
1,3,5-trimethylbenzene	DETSC 3432	1	ug/l	14	< 1	< 1	< 1	< 1
4-chlorotoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Tert-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2,4-trimethylbenzene	DETSC 3432	1	ug/l	34	< 1	< 1	< 1	< 1
sec-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
p-isopropyltoluene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,3-dichlorobenzene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2
1,4-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
n-butylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dibromo-3-chloropropane	DETSC 3432	1	ug/l	< 1	64	< 1	< 1	< 1
1,2,4-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2,3-trichlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
MTBE	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1
SVOCs								
Phenol	DETSC 3434*	1	ug/l					
Aniline	DETSC 3434*	1	ug/l					
2-Chlorophenol	DETSC 3434*	1	ug/l					
Benzyl Alcohol	DETSC 3434*	1	ug/l					
2-Methylphenol	DETSC 3434*	1	ug/l					
Bis(2-chloroisopropyl)ether	DETSC 3434*	1	ug/l					
3&4-Methylphenol	DETSC 3434*	1	ug/l					
Bis(2-chloroethoxy)methane	DETSC 3434*	1	ug/l					
2,4-Dimethylphenol	DETSC 3434*	1	ug/l					
2,4-Dichlorophenol	DETSC 3434*	1	ug/l					
1,2,4-Trichlorobenzene	DETSC 3434*	1	ug/l					
4-Chloro-3-methylphenol	DETSC 3434*	1	ug/l					
2-Methylnaphthalene	DETSC 3434*	1	ug/l					
Hexachlorocyclopentadiene	DETSC 3434*	1	ug/l					
2,4,6-Trichlorophenol	DETSC 3434*	1	ug/l					
2,4,5-Trichlorophenol	DETSC 3434*	1	ug/l					
2-Chloronaphthalene	DETSC 3434*	1	ug/l					
2-Nitroaniline	DETSC 3434*	1	ug/l					
	192100 9494	- -	49/ I					

			Lab No		1671899	1671900	1671901	1671902
		-		PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		Si	ample ID		BH101	BH101	BH106	BH108
			Depth		2.00-10.00	3.00-16.50	3.94-10.00	2.20-6.00
			Other ID		100	100	100	100
			ple Type		EW	EW	EW	EW
			ling Date		06/05/2020	06/05/2020	06/05/2020	06/05/2020
- .		-	ing Time		n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l					
3-Nitroaniline	DETSC 3434*	1	ug/l					
4-Nitrophenol	DETSC 3434*	1	ug/l					
Dibenzofuran	DETSC 3434*	1	ug/l					
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l					
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l					
Diethylphthalate	DETSC 3434*	1	ug/l					
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l					
4-Nitroaniline	DETSC 3434*	1	ug/l					
Diphenylamine	DETSC 3434*	1	ug/l					
4-Bromophenylphenylether	DETSC 3434*	1	ug/l					
Hexachlorobenzene	DETSC 3434*	1	ug/l					
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l					
Pentachlorophenol	DETSC 3434*	1	ug/l					
Di-n-butylphthalate	DETSC 3434*	1	ug/l					
Butylbenzylphthalate	DETSC 3434*	1	ug/l					
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l					
Di-n-octylphthalate	DETSC 3434*	1	ug/l					
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l					
Dimethylphthalate	DETSC 3434*	1	ug/l					
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l					
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l					
Azobenzene	DETSC 3434*	1	ug/l					
Carbazole	DETSC 3434*	1	ug/l					
1-Methylnaphthalene	DETSC 3434*	1	ug/l					

contract ritle France Site Group	a meet Batter i		Lab No	1671903	1671904	1685108	1685109	1700278
			205 110	PRAIRIE_AUK_				PRAIRIE_AUK
		Sa	ample ID		BH110		 SW2	_ _SW4
			Depth	5.00-14.00	4.00-20.80	0.00	0.00	0.00
			Other ID	100	100	1	1	2
		Sam	ple Type	EW	EW	EW	EW	EW
		Sampl	ing Date	06/05/2020	06/05/2020	15/06/2020	15/06/2020	15/07/2020
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
VOCs								
Dichlorodifluoromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Chloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Bromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Chloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Trichlorofluoromethane	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	DETSC 3432*	27	ug/l	< 27	< 27	< 27	< 27	< 27
Trans-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Cis-1,2-dichloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
2,2-dichloropropane	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2
Bromochloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4
Chloroform	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,1-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Carbon tetrachloride	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Benzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Dibromomethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	DETSC 3432	4	ug/l	< 4	< 4	< 4	< 4	< 4
cis-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Toluene	DETSC 3432	1	ug/l	< 1	< 1	1	1	< 1
trans-1,3-dichloropropene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,2-trichloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,3-dichloropropane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,2-dibromoethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
1,1,1,2-tetrachloroethane	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Ethylbenzene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
m+p-Xylene	DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2
o-Xylene	DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
Styrene	DETSC 3432	1	ug/l	< 1	< 1	<1	< 1	< 1
Bromoform	DETSC 3432	1	ug/l	< 1	< 1	<1	< 1	< 1
Isopropylbenzene	DETSC 3432 DETSC 3432	1			< 1	<1	< 1	< 1
порторушениене	DE13C 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1

	VUIKS	Lah No	1671903	1671904	1685108	1685109	1700278
			PRAIRIE_AUK_				PRAIRIE_AUK
	Sa	ample ID	BH108	BH110	SW1	SW2	_SW4
		Depth	5.00-14.00	4.00-20.80	0.00	0.00	0.00
		Other ID	100	100	1	1	2
	Sam	ple Type	EW	EW	EW	EW	EW
	-	-		06/05/2020	15/06/2020	15/06/2020	15/07/2020
	-	-	n/s	n/s	n/s	n/s	n/s
							< 1
							< 1
							< 1
DETSC 3432						< 1	< 1
DETSC 3432	1		< 1		< 1	< 1	< 1
DETSC 3432	1		< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	2	ug/l	< 2	< 2	< 2	< 2	< 2
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3432*	1	ug/l	< 1	< 1	< 1	< 1	< 1
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	14
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1				< 1.0	< 1.0	< 10.0
DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
DETSC 3434*	1				< 1.0	< 1.0	< 10.0
	DETSC 3432 DETSC 3434* DETSC 3434*	Sample Method LOD DETSC 3432 1 DETSC 3434 1 DETSC 3434* 1 DETSC 3434* 1 DETSC 3434* 1 <td< td=""><td>Sample ID Depth Other ID Sampliny Date Sampliny Date Sampliny Date Sampliny Date DETSC 3432 Units DETSC 3432 1 ug/l DETSC 3432</td><td>Sample ID DepthBH1085.00-14.00Cother IDSampler TypeSampling Date06/05/2020Sampling Time06/05/2020Sampling TimeDETSC 34321USC 34321DETSC 34321USC 3434*1USC 3434*<</td><td>PRAIRIE_AUK BRIJONPRAIRIE_AUK BH100PRAIRIE_AUK BH100BH100BH110DetrotDetrot10004.00-20.80Sample Type Sampling Date Sampling Date Sampling DateDef/SC06/05/202006/05/2020MethodLODUnitsUnitsUnitsUnitsDETSC 34321ug/I<1</br></td><1</td<>	Sample ID Depth Other ID Sampliny Date Sampliny Date Sampliny Date Sampliny Date DETSC 3432 Units DETSC 3432 1 ug/l DETSC 3432	Sample ID DepthBH1085.00-14.00Cother IDSampler TypeSampling Date06/05/2020Sampling Time06/05/2020Sampling TimeDETSC 34321USC 34321DETSC 34321USC 3434*1USC 3434*<	PRAIRIE_AUK BRIJONPRAIRIE_AUK BH100PRAIRIE_AUK BH100BH100BH110DetrotDetrot10004.00-20.80Sample Type 	Sample TD BAINE_AUKPRAINE_AUK BH100<	FRAIRE AUX PRAIRE

			Lab No		1671904	1685108	1685109	1700278
				PRAIRIE_AUK_		PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK
		Sa	ample ID	BH108	BH110	SW1	SW2	_SW4
			Depth	5.00-14.00	4.00-20.80	0.00	0.00	0.00
			Other ID		100	1	1	2
			ple Type	EW	EW	EW	EW	EW
		-	ling Date		06/05/2020	15/06/2020	15/06/2020	15/07/2020
		-	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	-	1	1	1	
2,4-Dinitrotoluene	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
3-Nitroaniline	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
4-Nitrophenol	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Dibenzofuran	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
2,6-Dinitrotoluene	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
2,3,4,6-Tetrachlorophenol	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Diethylphthalate	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
4-Chlorophenylphenylether	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
4-Nitroaniline	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Diphenylamine	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
4-Bromophenylphenylether	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Hexachlorobenzene	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Bis(2-ethylhexyl)ester	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Pentachlorophenol	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Di-n-butylphthalate	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Butylbenzylphthalate	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Bis(2-ethylhexyl)phthalate	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Di-n-octylphthalate	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
1,4-Dinitrobenzene	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Dimethylphthalate	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
1,3-Dinitrobenzene	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
2,3,5,6-Tetrachlorophenol	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Azobenzene	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
Carbazole	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0
1-Methylnaphthalene	DETSC 3434*	1	ug/l			< 1.0	< 1.0	< 10.0

Summary of Chemical Analysis

Leachate Samples

			Lab No	1665143	1665582	1665595	1665614
		6	mple ID	PRAIRIE_AUK_ TP175	PRAIRIE_AUK_ TP108	PRAIRIE_AUK_ TP114	PRAIRIE_AUK_ TP179
		30	Depth	0.80	2.00	0.90	
			Other ID				1.40
			ple Type	3 ES	8 ES	6 ES	ES
			ing Date	ES 06/04/2020	ES 06/04/2020	ES 07/04/2020	09/04/2020
			ing Time	n/s	00/04/2020 n/s	07/04/2020 n/s	n/s
Test	Method	LOD	Units	11/3	11/3	11/5	11/5
Preparation	memor	102	•				
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y	Y
Metals		1 1					
Antimony, Dissolved	DETSC 2306	0.17	ug/l	0.32	0.55	2.9	0.18
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.88	2.8	5.7	1.9
Barium, Dissolved	DETSC 2306	0.26	ug/l	7.9	27	2.3	70
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	47	75	63	91
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.03	< 0.03	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	0.42	43	< 0.25	< 0.25
Chromium, Total	DETSC 2306*	0.25	ug/l				
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.0	2.0	1.2	1.0
Iron, Dissolved	DETSC 2306	5.5	ug/l	21	< 5.5	52	80
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.45	0.09	0.85	< 0.09
Magnesium, Dissolved	DETSC 2306	0.02	mg/l	2.1	0.72	0.34	14
Manganese, Dissolved	DETSC 2306	0.22	ug/l	52	1.8	10	890
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.02	0.01	< 0.01	< 0.01
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	2.5	7.3	5.2	2.0
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	3.9	0.6	2.6
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	0.6	22	21	0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	1.6	< 1.3	2.3	5.3
Inorganics		11					
рН	DETSC 2008		pН	8.2	10.4	8.5	7.1
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	67
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	1.6	< 0.015	0.029	0.20
Chloride	DETSC 2055	0.1	mg/l	6.5	10	6.5	4.5
Sulphate as SO4	DETSC 2055	0.1	mg/l	11	72	6.7	37

Summary of Chemical Analysis

Leachate Samples

			Lab No		1665582	1665595	1665614
				PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		Sa	ample ID	TP175	TP108	TP114	TP179
			Depth	0.80	2.00	0.90	1.40
			Other ID	3	8	6	4
			ple Type	ES	ES	ES	ES
		-	ing Date	06/04/2020	06/04/2020	07/04/2020	09/04/2020
		-	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Petroleum Hydrocarbons			4	0.4	0.4	10.0	1.0
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 10.0	< 1.0
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 10.0	< 1.0
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 10.0	< 1.0
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	30	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 10.0	< 1.0
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 10.0	< 1.0
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 10.0	< 1.0
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	10	3000	480
Aromatic C12-C16	DETSC 3072*	1	ug/l	110	260	410	370
Aromatic C16-C21	DETSC 3072*	1	ug/l	22	65	180	18
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	51	13
Aromatic C5-C35	DETSC 3072*	10	ug/l	130	340	3700	880
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	130	340	3700	880
EPH (C10-C40)	DETSC 3311	10	ug/l	9300	66		
PAHs							
Naphthalene	DETSC 3304	0.05	ug/l	890	0.17	10000	2300
Acenaphthylene	DETSC 3304	0.01	ug/l	86	0.11	390	32
Acenaphthene	DETSC 3304	0.01	ug/l	910	0.12	30	490
Fluorene	DETSC 3304	0.01	ug/l	380	0.06	88	78
Phenanthrene	DETSC 3304	0.01	ug/l	360	0.13	200	16
Anthracene	DETSC 3304	0.01	ug/l	57	0.09	32	1.2
Fluoranthene	DETSC 3304	0.01	ug/l	66	0.40	45	1.2
Pyrene	DETSC 3304	0.01	ug/l	41	0.35	34	< 1.00
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	24	0.24	9.6	< 1.00
Chrysene	DETSC 3304	0.01	ug/l	20	0.31	8.8	< 1.00
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	27	0.65	12	< 1.00
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	9.7	0.23	4.6	< 1.00
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	19	0.36	8.6	< 1.00
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	15	0.33	5.7	< 1.00
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	3.0	0.05	< 1.00	< 1.00
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	9.5	0.27	5.6	< 1.00
PAH Total	DETSC 3304	0.2	ug/l	2900	3.9	11000	2900
Phenols	22.000007	0.2	~0/ '	2300	5.5	11000	2300
Phenol - Monohydric	DETSC 2130	100	ug/l	< 100	< 100	2600	< 100
	195190 2100	100	чъ/ i	× ±00	× ±00	2000	× ±00

Summary of Chemical Analysis

Leachate Samples

	0						
			Lab No	1665615	1665616	1665617	1665996
		6-		PRAIRIE_AUK_ TP179	PRAIRIE_AUK_ TP181	PRAIRIE_AUK_ TP182	PRAIRIE_AUK_ TP145
		38	mple ID				
			Depth Other ID	2.00	0.60	0.90	1.60
			ple Type	ES	3 ES	3 ES	ES
			ing Date	09/04/2020	09/04/2020	09/04/2020	14/04/2020
		-	ing Time	03/04/2020 n/s	03/04/2020 n/s	n/s	n/s
Test	Method	LOD	Units	11/3	11/3	11/3	11/3
Preparation	methou	105	0				
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y	Y
Metals		1					
Antimony, Dissolved	DETSC 2306	0.17	ug/l	< 0.17	0.47	0.33	2.2
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.89	4.2	3.6	3.9
Barium, Dissolved	DETSC 2306	0.26	ug/l	6.0	5.6	6.5	26
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	100	21	73	170
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	0.79	0.93	0.57	1.1
Chromium, Total	DETSC 2306*	0.25	ug/l				
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.7	5.6	< 0.4	4.2
Iron, Dissolved	DETSC 2306	5.5	ug/l	1700	94	480	50
Lead, Dissolved	DETSC 2306	0.09	ug/l	1.2	4.2	0.09	0.26
Magnesium, Dissolved	DETSC 2306	0.02	mg/l	1.9	1.7	3.3	4.6
Manganese, Dissolved	DETSC 2306	0.22	ug/l	28	6.2	86	7.6
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.02
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	1.3	1.2	2.7	7.9
Nickel, Dissolved	DETSC 2306	0.5	ug/l	1.1	0.5	2.5	0.7
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	1.3	2.4	< 0.6	26
Zinc, Dissolved	DETSC 2306	1.3	ug/l	3.3	2.0	< 1.3	< 1.3
Inorganics	÷						
рН	DETSC 2008		pН	7.5	8.3	7.6	8.7
Cyanide, Total	DETSC 2130	40	ug/l	41	46	1100	< 40
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	1.2	0.022	0.071	< 0.015
Chloride	DETSC 2055	0.1	mg/l	2.1	5.7	3.0	3.0
Sulphate as SO4	DETSC 2055	0.1	mg/l	180	27	18	55

Summary of Chemical Analysis

Leachate Samples

			Lab No	1665615	1665616	1665617	1665996
				PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		Sa	ample ID	TP179	TP181	TP182	TP145
			Depth	2.00	0.60	0.90	1.60
			Other ID	7	3	3	4
			ple Type	ES	ES	ES	ES
		-	ing Date	09/04/2020	09/04/2020	09/04/2020	14/04/2020
_ .		-	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Petroleum Hydrocarbons		0.1		< 0.1	< 0.1	< 1.0	< 0.1
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 1.0	< 0.1
Aliphatic C6-C8 Aliphatic C8-C10	DETSC 3322		ug/l	< 0.1	< 0.1	820	
Aliphatic C10-C12	DETSC 3322 DETSC 3072*	0.1	ug/l	< 0.1	< 0.1	< 1.0	< 0.1 < 1.0
Aliphatic C12-C16			ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16 Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	
Aliphatic C10-C21 Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 1.0	< 1.0	820	< 10
Aromatic C5-C7	DETSC 3072* DETSC 3322	0.1	ug/l ug/l	< 10	< 0.1	< 1.0	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/i ug/l	< 0.1	< 0.1	< 1.0	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/i ug/l	< 0.1	< 0.1	< 1.0	< 0.1
Aromatic C10-C12	DETSC 3322 DETSC 3072*	1	ug/l	< 1.0	< 1.0	3400	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	3400	< 1.0
Aromatic C12-C10 Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	610	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	180	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	7700	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	8500	< 10
EPH (C10-C40)	DETSC 3311	10	ug/l	. 10	(10	0000	10
PAHs	511000011		~8/ ·				
Naphthalene	DETSC 3304	0.05	ug/l	50	1.7	11000	0.78
Acenaphthylene	DETSC 3304	0.01	ug/l	3.4	9.0	190	0.16
Acenaphthene	DETSC 3304	0.01	ug/l	47	3.3	1100	0.40
Fluorene	DETSC 3304	0.01	ug/l	7.5	1.9	290	0.26
Phenanthrene	DETSC 3304	0.01	ug/l	2.1	4.2	170	0.95
Anthracene	DETSC 3304	0.01	ug/l	0.51	3.3	35	0.31
Fluoranthene	DETSC 3304	0.01	ug/l	0.41	4.3	24	
Pyrene	DETSC 3304	0.01	ug/l	0.25	4.4	14	2.0
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	< 0.10	2.1	2.8	0.94
Chrysene	DETSC 3304	0.01	ug/l	< 0.10	3.9	3.1	1.8
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	8.1	2.4	3.7
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	2.8	1.1	1.3
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.10	4.4	1.3	
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.10	7.1	< 1.00	2.2
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.10	1.7	< 1.00	0.33
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.10	8.0	< 1.00	2.9
PAH Total	DETSC 3304	0.2	ug/l	110	70	13000	
Phenols			-				
Phenol - Monohydric	DETSC 2130	100	ug/l	< 100	< 100	< 100	< 100

Summary of Chemical Analysis

Leachate Samples

			Lab No					1668137
		c .		PRAIRIE_AUK_		PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		58	ample ID		TP136	TP128		TP170
			Depth	1.20	0.80	0.90	1.00	1.00
			Other ID	3		3	3	4
			ple Type			ES	ES	ES
		-	ing Date			17/04/2020	20/04/2020	20/04/2020
Test			ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Preparation				V	Y	V	V	V
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Ý	Y	Y	Y
Metals		0.17		0.33	0.25	0.58	0.70	0.80
Antimony, Dissolved Arsenic, Dissolved	DETSC 2306	0.17	ug/l	1.6		5.9	0.70	0.80
Barium, Dissolved	DETSC 2306	0.16	ug/l	32	2.8	5.9	36	40
Beryllium, Dissolved	DETSC 2306		ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
· · ·	DETSC 2306*	0.1	ug/l					
Boron, Dissolved	DETSC 2306*	12	ug/l	50		76	15	16
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03		< 0.03	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Chromium, Total	DETSC 2306*	0.25	ug/l					
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0		< 7.0	8.1	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	0.6		5.8	1.0	1.0
Iron, Dissolved	DETSC 2306	5.5	ug/l	860		160	28	36
Lead, Dissolved	DETSC 2306	0.09	ug/l	< 0.09	< 0.09	0.57	0.14	0.16
Magnesium, Dissolved	DETSC 2306	0.02	mg/l	4.5	0.21	3.6	1.2	1.4
Manganese, Dissolved	DETSC 2306	0.22	ug/l	400	0.85	98	160	180
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	1.5	< 1.1	1.9	< 1.1	< 1.1
Nickel, Dissolved	DETSC 2306	0.5	ug/l	2.1	0.7	2.5	3.7	4.2
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	< 0.6	5.4	2.2	< 0.6	< 0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.8	< 1.3	7.2	15	15
Inorganics	•				•	•		
рН	DETSC 2008		pН	8.1	10.4	7.3	10.7	8.4
Cyanide, Total	DETSC 2130	40	ug/l	2200	< 40	< 40	< 40	< 40
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	< 0.015	< 0.015	0.36	0.14	0.20
Chloride	DETSC 2055	0.1	mg/l	2.6	1.8	15	4.3	5.8
Sulphate as SO4	DETSC 2055	0.1	mg/l	64	18	1.7	31	33

Summary of Chemical Analysis

Leachate Samples

			Lab No		1666349	1667239	1668136	1668137
		5.	mple ID	PRAIRIE_AUK_ TP163	PRAIRIE_AUK_ TP136	PRAIRIE_AUK_ TP128	PRAIRIE_AUK_ TP110	PRAIRIE_AUK_ TP170
		30	Depth	1.20	0.80	0.90	1.00	1.00
			Other ID		3	3	3	1.00
			ple Type	ES	ES	ES	ES	ES
			ing Date	14/04/2020	15/04/2020	17/04/2020	20/04/2020	20/04/2020
			ng Time		n/s	n/s	n/s	n/s
Test	Method	LOD	Units	1,75	11/3	11/5	11/3	11/ 5
Petroleum Hydrocarbons								
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	13	19	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	87	260	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	7.1	< 1.0	4.3
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	340	1.7	25
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	54	2.4	29
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	15	17
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	100	680	19	75
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	6.6	4.5	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	6.7	15	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	3100	1.2	1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	13000	< 1.0	5.7
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	95	18	18
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	4.2	81	20
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	13	16000	100	45
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	110	17000	120	120
ЕРН (С10-С40)	DETSC 3311	10	ug/l					
PAHs		1 1			I			
Naphthalene	DETSC 3304	0.05	ug/l	3.2	0.07	230	0.32	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	30	0.14	2.6	0.34	0.03
Acenaphthene	DETSC 3304	0.01	ug/l	650	0.21	160	0.52	0.02
Fluorene	DETSC 3304	0.01	ug/l	120	0.09	30	0.19	0.01
Phenanthrene	DETSC 3304	0.01	ug/l	5.7	0.17	0.75	1.2	0.07
Anthracene	DETSC 3304	0.01	ug/l	11	0.14	0.20	0.63	0.09
Fluoranthene	DETSC 3304	0.01	ug/l	11	2.7	0.05	9.9	0.28
Pyrene	DETSC 3304	0.01	ug/l	6.7	2.6	0.04	9.1	0.26
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	1.4	1.3	0.02	5.5	0.12
Chrysene	DETSC 3304	0.01	ug/l	1.5	2.2	0.04	6.7	0.14
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	1.6	2.8	0.04	13	0.19
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 1.00	0.99	0.01	4.3	0.07
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 1.00	1.7	0.02	8.5	0.11
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 1.00	1.6	0.04	4.0	0.17
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 1.00	0.32	< 0.01	1.3	0.04
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 1.00	1.5	0.04	5.0	0.15
PAH Total	DETSC 3304	0.2	ug/l	840	18	420	71	1.8
Phenols	1							
Phenol - Monohydric	DETSC 2130	100	ug/l	< 100	< 100	< 100	< 100	< 100

Summary of Chemical Analysis

Leachate Samples

	Lab No				1668574	1668575	1668870
				PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		Sa	ample ID	TP140	TP141	TP142	TP144
			Depth	1.00	2.00	1.50	0.80
			Other ID	3	4	4	3
			ple Type	ES	ES	ES	ES
			ing Date	23/04/2020	23/04/2020	23/04/2020	24/04/2020
		-	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation				X		V	
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y	Y
Metals		0.47	4	0.42		10	1.0
Antimony, Dissolved	DETSC 2306	0.17	ug/l	0.43	14	18	1.8
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.7	8.1	41	3.1
Barium, Dissolved	DETSC 2306	0.26	ug/l	11	20	2.9	38
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	46	180	17	60
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	0.04	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	1.7	< 0.25	0.44	0.91
Chromium, Total	DETSC 2306*	0.25	ug/l				
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	4.2	0.7	30	6.4
Iron, Dissolved	DETSC 2306	5.5	ug/l	31	8.7	240	47
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.41	0.30	16	0.86
Magnesium, Dissolved	DETSC 2306	0.02	mg/l	1.7	3.4	0.15	2.0
Manganese, Dissolved	DETSC 2306	0.22	ug/l	2.4	47	3.1	12
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.17	0.27	1.2	0.05
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	6.6	51	77	4.4
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.5	11	18	1.2
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	15	0.9	1.6	5.4
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.5	4.3	6.0	3.8
Inorganics		1	0,				
pH	DETSC 2008		pН	8.4	8.2	10.0	7.2
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.033	0.91	3.2	0.17
Chloride	DETSC 2055	0.1	mg/l	0.73	1.4	1.5	1.6
Sulphate as SO4	DETSC 2055	0.1	mg/l	29	25	2.2	58

Summary of Chemical Analysis

Leachate Samples

			Lab No	1668573	1668574	1668575	1668870
				PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		Sa	ample ID	TP140	TP141	TP142	TP144
			Depth	1.00	2.00	1.50	0.80
			Other ID	3	4	4	3
			ple Type	ES	ES	ES	ES
		-	ing Date	23/04/2020	23/04/2020	23/04/2020	24/04/2020
		-	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Petroleum Hydrocarbons		г т					
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	4.1	1.2	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	9.3	8.3	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	83	130	5.4
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	350	1000	47
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	440	1200	53
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	1.1	1.4	1.2
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	4.9	12	1.7
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	79	100	14
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	390	670	66
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	480	790	83
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	920	1900	140
EPH (C10-C40)	DETSC 3311	10	ug/l				
PAHs		I I					
Naphthalene	DETSC 3304	0.05	ug/l	0.30	2.5	0.29	1.9
Acenaphthylene	DETSC 3304	0.01	ug/l	0.23	0.14	< 0.10	2.7
Acenaphthene	DETSC 3304	0.01	ug/l	0.11	0.54	< 0.10	0.93
Fluorene	DETSC 3304	0.01	ug/l	0.11	0.51	0.11	1.1
Phenanthrene	DETSC 3304	0.01	ug/l	1.2	1.4	0.24	16
Anthracene	DETSC 3304	0.01	ug/l	0.38	0.23	< 0.10	3.1
Fluoranthene	DETSC 3304	0.01	ug/l	3.5	1.4	< 0.10	36
Pyrene	DETSC 3304	0.01	ug/l	3.1	1.0	< 0.10	33
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	1.6	0.40	< 0.10	19
Chrysene	DETSC 3304	0.01	ug/l	2.4	0.61	< 0.10	20
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	4.4	0.50	< 0.10	35
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	1.9	0.20	< 0.10	11
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	2.9	0.31	< 0.10	21
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	4.0	0.33	< 0.10	22
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	0.69	< 0.10	< 0.10	10
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	3.8	0.35	< 0.10	20
PAH Total	DETSC 3304	0.01	ug/l	31	10	< 1.60	250
Phenols	102130 3304	0.2	ug/I	51	10	< I.00	250
Phenol - Monohydric	DETSC 2130	100	ug/l	< 100	< 100	400	< 100
	DE13C 2130	100	ug/I	< TOO	< TOO	400	< TOO

Summary of Chemical Analysis

Leachate Samples

	U		Lab No	1000250	1070145	1075 420	1075420
			Lad NO	1669252 PRAIRIE_AUK_	1670145 PRAIRIE_AUK_	1675436 PRAIRIE_AUK_	1675439 PRAIRIE_AUK_
		S	ample ID	TP112	TP201	TP123	TP120A
		-	Depth	2.10	3.60	0.60	1.00
			Other ID	7	1	3	3
		Sam	ple Type	ES	ES	ES	ES
			ing Date	22/04/2020	28/04/2020	08/04/2020	20/04/2020
		-	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation							
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y	Y
Metals							
Antimony, Dissolved	DETSC 2306	0.17	ug/l	0.57	0.98	2.8	1.6
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.1	2.1	4.7	1.4
Barium, Dissolved	DETSC 2306	0.26	ug/l	17	47	20	32
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	14	150	51	110
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	0.11	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	2.0		1.6	2.0
Chromium, Total	DETSC 2306*	0.25	ug/l		0.32		
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	3.6	3.6	22	3.2
Iron, Dissolved	DETSC 2306	5.5	ug/l	34	< 5.5	31	9.6
Lead, Dissolved	DETSC 2306	0.09	ug/l	1.1	0.20	0.20	< 0.09
Magnesium, Dissolved	DETSC 2306	0.02	mg/l	1.1	24	0.22	0.29
Manganese, Dissolved	DETSC 2306	0.22	ug/l	7.9	30	1.6	0.90
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	0.01	0.02	0.03
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	2.3	2.1	3.4	1.8
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	6.3	1.2	< 0.5
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	1.0	0.8	48	78
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.9	33	< 1.3	< 1.3
Inorganics							
рН	DETSC 2008		pН	10.7	7.7	10.7	10.2
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	44	< 40
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.039	0.097	0.13	0.058
Chloride	DETSC 2055	0.1	mg/l	7.7	4.0	1.9	1.4
Sulphate as SO4	DETSC 2055	0.1	mg/l	33	400	31	37

Summary of Chemical Analysis

Leachate Samples

	_		Lab No		1670145	1675436	1675439
				PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		Sa	ample ID	TP112	TP201	TP123	TP120A
			Depth	2.10	3.60	0.60	1.00
			Other ID	7	1	3	3
			ple Type	ES	ES	ES	ES
		-	ing Date	22/04/2020	28/04/2020	08/04/2020	20/04/2020
Test		-	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Petroleum Hydrocarbons	DETCO 2222	0.1		.0.1	. 0.1	.0.1	.0.1
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10
ЕРН (С10-С40)	DETSC 3311	10	ug/l				
PAHs		0.05	4	0.25	0.00	0.00	0.62
Naphthalene	DETSC 3304	0.05	ug/l	0.25	0.28	0.30	0.63
Acenaphthylene	DETSC 3304	0.01	ug/l	0.23	0.02	0.58	0.43
Acenaphthene	DETSC 3304	0.01	ug/l	0.05	0.12	0.65	0.42
Fluorene	DETSC 3304	0.01	ug/l	0.11	0.03	0.28	0.21
Phenanthrene	DETSC 3304	0.01	ug/l	5.7	0.05	0.49	1.9
Anthracene	DETSC 3304	0.01	ug/l		0.04	0.21	0.89
Fluoranthene	DETSC 3304	0.01	ug/l		0.05	0.74	16
Pyrene	DETSC 3304	0.01	ug/l	1.1	0.04	0.50	18
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	0.26	0.02	0.35	9.4
Chrysene	DETSC 3304	0.01	ug/l	0.32	0.02	0.38	12
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	0.30	0.03	0.71	20
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	0.16	< 0.01	0.29	11
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	0.14	0.02	0.44	14
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	0.22	0.02	0.59	16
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	0.04	< 0.01	0.12	3.8
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	0.18	0.02	0.58	16
PAH Total	DETSC 3304	0.2	ug/l	12	0.75	7.2	140
Phenols							
Phenol - Monohydric	DETSC 2130	100	ug/l	< 100	< 100	< 100	< 100

Summary of Chemical Analysis

Leachate Samples

Contract Litle Prairie Site Groun	iu investigation v	VUIKS				
			Lab No		1675442	1675443
				PRAIRIE_AUK_	PRAIRIE_AUK_	PRAIRIE_AUK_
		Sa	ample ID	TP103	TP194A	TP196A
			Depth	1.00	1.40	1.40
			Other ID ple Type	3	1	1
				ES	ES	ES
		-	ing Date ing Time	20/04/2020	29/04/2020	29/04/2020
Test	Method	LOD	Units	n/s	n/s	n/s
Preparation	methou	200	Units			
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y
Metals	L					
Antimony, Dissolved	DETSC 2306	0.17	ug/l	0.46	0.71	0.66
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.5	1.5	0.98
Barium, Dissolved	DETSC 2306	0.26	ug/l	18	26	27
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	0.3
Boron, Dissolved	DETSC 2306*	12	ug/l	51	150	75
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	0.10
Chromium, Dissolved	DETSC 2306	0.25	ug/l	0.65	< 0.25	0.93
Chromium, Total	DETSC 2306*	0.25	ug/l			
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.8	1.2	2.0
Iron, Dissolved	DETSC 2306	5.5	ug/l	15	150	410
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.14	< 0.09	1.1
Magnesium, Dissolved	DETSC 2306	0.02	mg/l	2.4	5.6	4.8
Manganese, Dissolved	DETSC 2306	0.22	ug/l	7.9	330	580
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	0.04
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	1.5	2.7	6.1
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	2.1	2.6
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	27	1.1	1.4
Zinc, Dissolved	DETSC 2306	1.3	ug/l	10	4.5	1.7
Inorganics						
рН	DETSC 2008		рН	8.6	8.5	6.9
Cyanide, Total	DETSC 2130	40	ug/l	< 40	320	1000
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.16	0.078	0.063
Chloride	DETSC 2055	0.1	mg/l	1.3	2.5	2.2
Sulphate as SO4	DETSC 2055	0.1	mg/l	36	28	44

Summary of Chemical Analysis

Leachate Samples

			Lab No		1675442	1675443
		6		PRAIRIE_AUK_ TP103	PRAIRIE_AUK_ TP194A	PRAIRIE_AUK_
		36	Imple ID Depth			TP196A
			Other ID	1.00	1.40	1.40
			ple Type	ES	ES	ES
			ing Date	20/04/2020	29/04/2020	29/04/2020
		-	ing Time	n/s	23/04/2020 n/s	n/s
Test	Method	LOD	Units	1,3	11/3	1,75
Petroleum Hydrocarbons						
Aliphatic C5-C6	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	22	< 0.1
Aliphatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	DETSC 3072*	10	ug/l	< 10	22	< 10
Aromatic C5-C7	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	DETSC 3072*	1	ug/l	< 1.0	1.1	< 1.0
Aromatic C12-C16	DETSC 3072*	1	ug/l	< 1.0	25	12
Aromatic C16-C21	DETSC 3072*	1	ug/l	1.9	4.1	1.6
Aromatic C21-C35	DETSC 3072*	1	ug/l	6.4	1.0	< 1.0
Aromatic C5-C35	DETSC 3072*	10	ug/l	< 10	31	15
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	ug/l	< 10	53	15
ЕРН (С10-С40)	DETSC 3311	10	ug/l			
PAHs	1					
Naphthalene	DETSC 3304	0.05	ug/l	4.6	57	34
Acenaphthylene	DETSC 3304	0.01	ug/l	3.2	200	170
Acenaphthene	DETSC 3304	0.01	ug/l	< 1.00	430	760
Fluorene	DETSC 3304	0.01	ug/l	1.1	200	270
Phenanthrene	DETSC 3304	0.01	ug/l	4.4	180	66
Anthracene	DETSC 3304	0.01	ug/l	4.8	53	66
Fluoranthene	DETSC 3304	0.01	ug/l		82	92
Pyrene	DETSC 3304	0.01	ug/l	95	48	56
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	70	22	18
Chrysene	DETSC 3304	0.01	ug/l	76	19	18
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	210	24	27
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	57	10	11
Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	130	19 15	18 17
Dibenzo(a,h)anthracene	DETSC 3304 DETSC 3304	0.01	ug/l ug/l	210 28	3.7	4.4
Benzo(g,h,i)perylene		0.01		400	3.7	4.4
PAH Total	DETSC 3304 DETSC 3304	0.01	ug/l ug/l	1400	12	1700
Phenols	DL13C 3304	0.2	ug/I	1400	1400	1700
Phenol - Monohydric	DETSC 2130	100	ug/l	< 100	< 100	< 100
i nenor monoriyune	DE13C 2130	100	ug/I	< TOO	< TOO	< TOO

Summary of Asbestos Analysis

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

und Investigation Wor Sample

		Sample				
Lab No	Sample ID	Location	Material Type	Result	Comment*	Analyst
1663605	PRAIRIE_AUK_TP132 4 1.30	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
		132_SO_0130				
1663606	PRAIRIE_AUK_TP131 5 1.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
		131_SO_0180				
1663734	PRAIRIE_AUK_TP101 5 1.00	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present as fibre	Joanne Luscombe
		101_SO_0100			bundles	
1663735	PRAIRIE_AUK_TP101 9 2.20	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
4662726		101_SO_0220	501			
1663736	PRAIRIE_AUK_TP104 5 1.50	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
1662727	PRAIRIE AUK TP105 11 2.50	104_SO_0150	SOIL	NAD		loonno luccombo
1663737	PRAIRIE_AUK_IP105 11 2.50	PRAIRIE_AUK_TP	SUIL	NAD	none	Joanne Luscombe
1663978	PRAIRIE AUK BH104 1 5.50	105_SO_0250 PRAIRIE_AUK_B	SOIL	NAD	none	Joanne Luscombe
1003978		H104 SO 0550	JOIL	NAD	none	
1665133	PRAIRIE AUK TP172 3 0.80	PRAIRIE_AUK_TP	SOIL	Amosite	Amosite present in bundles	Lee Kerridge
1005155		172 SO 0080	JUIL	Amosite	Amosite present in bundles	Lee Kernuge
1665134	PRAIRIE AUK TP175 3 0.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
1003131		175 SO 0080	3012		none	Lee Kernage
1665135	PRAIRIE AUK TP175 6 1.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
1003133		175 SO 0180	3012		none	Lee Kernage
1665136	PRAIRIE_AUK_TP178 3 0.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		178 SO 0080				
1665137	PRAIRIE_AUK_BH106 1 5.50	PRAIRIE_AUK_B	SOIL	NAD	none	Lee Kerridge
		H106 SO 0550				0
1665138	PRAIRIE_AUK_TP107 6 1.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		107_SO_0180				
1665139	PRAIRIE_AUK_TP107 11 0.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		107_SO_0080				
1665140	PRAIRIE_AUK_TP108 5 1.00	PRAIRIE_AUK_TP	SOIL	Amosite	Amosite present in bundles	Lee Kerridge
		108_SO_0100				
1665141	PRAIRIE_AUK_TP108 8 2.00	PRAIRIE_AUK_TP	SOIL	Amosite	Amosite present in bundles	Lee Kerridge
		108_SO_0200				
1665142	PRAIRIE_AUK_TP113 5 1.30	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present in bundles	Lee Kerridge
		113_SO_0130				
1665286	PRAIRIE_AUK_BH103 1 2.50	PRAIRIE_AUK_B	SOIL	NAD	none	Lee Kerridge
		H103_SO_0250		-		
1665288	PRAIRIE_AUK_TP115 6 1.90	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		115_SO_0190				
1665290	PRAIRIE_AUK_TP122 3 1.00	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present in microscopic	Lee Kerridge
		122_SO_0100			cement fragments	
1665291	PRAIRIE_AUK_TP123 3 0.60	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
1005000		123_SO_0060				
1665292	PRAIRIE_AUK_TP185 5 4.30	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
1005202		185_SO_0430	5011	NAD		Lee Kerridee
1665293	PRAIRIE_AUK_TP186 3 0.50	PRAIRIE_AUK_TP	SUIL	NAD	none	Lee Kerridge
1665295	PRAIRIE_AUK_TP188 3 1.00	186_SO_0050 PRAIRIE_AUK_TP	SOIL	NAD	2000	Loo Korridgo
1003233	NAINIL_AUK_1P100 5 1.00	188 SO 0100	JUIL	INAU	none	Lee Kerridge
1665450	PRAIRIE AUK TP121 4 1.50	PRAIRIE_AUK_TP	SOIL	NAD	none	D Wilkinson
1000-00		121 SO 0150				
1665451	PRAIRIE_AUK_TP138 3 1.20	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present in microscopic	D Wilkinson
		138_SO_0120			loose fibrous asbestos debris	
1665452	PRAIRIE_AUK_TP149 3 1.30	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present as fibre	D Wilkinson
		149_SO_0130		,	bundles	

Summary of Asbestos Analysis

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

ound Investigation Wor Sample

Lab No	Sample ID	Location	Material Type	Result	Comment*	Analyst
1665453	PRAIRIE_AUK_TP168 1 0.05	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present as fibre	D Wilkinson
		168_SO_0005			bundles	
1665454	PRAIRIE_AUK_TP173 3 0.90	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present as fibre	D Wilkinson
		173_SO_0090			bundles	
1665455	PRAIRIE_AUK_SURFACE1 1	PRAIRIE_AUK_S	SOIL	NAD	none	D Wilkinson
	0.00	URFACE1_SO_00				
		00				
1665588	PRAIRIE_AUK_TP114 6 0.90	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		114_SO_0090				
1665589	PRAIRIE_AUK_TP124 5 1.50	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present in bundles	Lee Kerridge
		124_SO_0150				
1665590	PRAIRIE_AUK_TP174 3 0.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		174_SO_0080				
1665591	PRAIRIE_AUK_TP174 6 1.60	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		174_SO_0160				
1665592	PRAIRIE_AUK_TP176 3 0.90	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		176_SO_0090				
1665593	PRAIRIE_AUK_TP177 2 0.60	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		177_SO_0060				
1665594	PRAIRIE_AUK_TP189 7 3.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		189_SO_0300				
1665610	PRAIRIE_AUK_TP179 4 1.40	PRAIRIE_AUK_TP	SOIL	U/S	U/S	U/S
		179_SO_0140				
1665611	PRAIRIE_AUK_TP179 7 2.00	PRAIRIE_AUK_TP	SOIL	NAD	none	D Wilkinson
		179_SO_0200				
1665612	PRAIRIE_AUK_TP181 3 0.60	PRAIRIE_AUK_TP	SOIL	NAD	none	D Wilkinson
		181_SO_0060				
1665613	PRAIRIE_AUK_TP182 3 0.90	PRAIRIE_AUK_TP	SOIL	U/S	U/S	U/S
		182_SO_0090				
1665990	PRAIRIE_AUK_TP145 4 1.60	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
1005004		145_SO_0160				
1665991	PRAIRIE_AUK_TP146C 5 1.30	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
10000		146C_SO_0130	SOU	Chrusstile	Duradlas of Charactile fibres	
1665992	PRAIRIE_AUK_TP156A 2 0.30	PRAIRIE_AUK_TP	SOIL	Chrysotile	Bundles of Chrysotile fibres	Joanne Luscombe
10000	PRAIRIE AUK TP162 3A 1.70	156A_SO_0030	5011			
1665993	PRAIRIE_AUK_IP162 3A 1.70	PRAIRIE_AUK_TP	SUIL	NAD	none	Joanne Luscombe
1665994	PRAIRIE_AUK_TP180 3 0.30	162_SO_0170 PRAIRIE_AUK_TP	SOIL	NAD	2020	Joanne Luscombe
1005994	PRAIRIE_AUK_IP180.3.0.30		SUIL	NAD	none	Joanne Luscombe
1665995	PRAIRIE AUK TP163 3 1.20	180_SO_0030 PRAIRIE_AUK_TP	SOIL	Chrysotile	Bundles of Chrysotile fibres	Joanne Luscombe
1002992	PRAIRIE_AUK_IP105 5 1.20	163 SO 0120	SOIL	Chrysothe	Bundles of Chrysotlie libres	Joanne Luscombe
1666343	PRAIRIE_AUK_TP135 5 1.30	PRAIRIE_AUK_TP	SOIL	Chrysotilo Amosito	Amosite and Chrysotile present in	Loo Korridgo
1000345	PRAIRIE_AUK_IP155 5 1.50	135_SO_0130	SOIL	Chirysothe Amosite	Loose Fibrous Asbestos Debris	Lee Kernuge
		155_50_0150			LOOSE FIDIOUS ASDESIOS DEDIIS	
1666344	PRAIRIE AUK TP136 3 0.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
1000344		136 SO 0080	3012	NAD .	hone	Lee Kernuge
1666345	PRAIRIE_AUK_TP136 10 2.90	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
1000345		136_SO_0290	3012	NAD .	hone	Lee Kernuge
1666346	PRAIRIE_AUK_TP165 3 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		165 SO 0100				
1666347	PRAIRIE AUK TP167 6 2.50	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		167_SO_0250				
1666348	PRAIRIE AUK TP169 3 1.50	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present in bundles	Lee Kerridge
		169_SO_0150			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1666610	PRAIRIE AUK BH108 1 2.50		SOIL	NAD	none	Lee Kerridge
		H108_SO_0250	1			

Summary of Asbestos Analysis

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

Sample

Lab No	Sample ID	Location	Material Type	Result	Comment*	Analyst
1666611	PRAIRIE_AUK_TP139B 3 0.30	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present in bundles	Lee Kerridge
		139B_SO_0030				_
1666612	PRAIRIE_AUK_TP139B 6 3.30	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		139B_SO_0330				
1666613	PRAIRIE_AUK_TP148A 5 1.40	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		148A_SO_0140				
1666614	PRAIRIE_AUK_TP150 3 1.50	PRAIRIE_AUK_TP	SOIL	Amosite Chrysotile	Amosite and Chrysotile present in	Lee Kerridge
		150_SO_0150			Loose Fibrous Asbestos Debris	
1666615	PRAIRIE_AUK_TP159 3 0.60	PRAIRIE_AUK_TP	SOIL	Amosite Chrysotile	Amosite and Chrysotile present in	Lee Kerridge
		159_SO_0060			Loose Fibrous Asbestos Debris	
1666616	PRAIRIE_AUK_TP190A 3 1.10	PRAIRIE_AUK_TP	SOIL	Amosite Chrysotile	Amosite and Chrysotile present in	Lee Kerridge
		190A_SO_0110		,	Loose Fibrous Asbestos Debris	
1667231	PRAIRIE_AUK_BH105 1 3.00	PRAIRIE_AUK_B	SOIL	NAD	none	Joanne Luscombe
		H105_SO_0300				
1667232	PRAIRIE_AUK_TP126 5 2.60	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
		126_SO_0260				
1667233	PRAIRIE_AUK_TP128 3 0.90	PRAIRIE_AUK_TP	SOIL	Chrysotile	small bundles of Chrysotile	Joanne Luscombe
		128_SO_0090			present	
1667234	PRAIRIE_AUK_TP129 4A 2.10	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
		129_SO_0210				
1667235	PRAIRIE_AUK_TP130 4A 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
		130_SO_0100				
1667236	PRAIRIE_AUK_TP147 4 1.50	PRAIRIE_AUK_TP	SOIL	Amosite	Amosite present as fibre bundles	Joanne Luscombe
		147_SO_0150				
1667237	PRAIRIE_AUK_TP158 3 1.30	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
		158_SO_0130				
1667238	PRAIRIE_AUK_TP157 2 0.80	PRAIRIE_AUK_TP	SOIL	Amosite	Amosite present as fibre bundles	Joanne Luscombe
		157_SO_0080				
1667501	PRAIRIE_AUK_TP120A 3 1.00	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile bundles present	Lee Kerridge
		120A_SO_0100				
1667502	PRAIRIE_AUK_TP134 3 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		134_SO_0100				
1667503	PRAIRIE_AUK_TP134 6 2.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		134_SO_0200				
1667504	PRAIRIE_AUK_TP161 3 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		161_SO_0100				
1667505	PRAIRIE_AUK_TP166 3 0.45	PRAIRIE_AUK_TP	SOIL	Amosite	Amosite present in bundles	Lee Kerridge
		166_SO_0045				
1667506	PRAIRIE_AUK_TP166 8 1.20	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		166_SO_0120				
1667507	PRAIRIE_AUK_TP171 3 0.75	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		171_SO_0075				
1667508	PRAIRIE_AUK_TP187 3 0.70	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		187_SO_0070				
1668118	PRAIRIE_AUK_BH110 1 3.00	PRAIRIE_AUK_B	SOIL	NAD	none	Lee Kerridge
		H110_SO_0300				
1668119	PRAIRIE_AUK_TP102 4 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		102_SO_0100				
1668120	PRAIRIE_AUK_TP102 11 3.00	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present in bundles	Lee Kerridge
		102_SO_0300				
1668121	PRAIRIE_AUK_TP103 3 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		103_SO_0100				

Summary of Asbestos Analysis

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

ound Investigation Wor Sample

Lab No	Sample ID	Location	Material Type	Result	Comment*	Analyst
1668122	PRAIRIE_AUK_TP109 3 1.00	PRAIRIE_AUK_TP		NAD	none	Lee Kerridge
		109 SO 0100				
1668123	PRAIRIE_AUK_TP110 3 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		110 SO 0100				_
1668124	PRAIRIE_AUK_TP110 7 2.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		110 SO 0200				
1668125	PRAIRIE_AUK_TP111 4 1.50	PRAIRIE_AUK_TP	SOIL	Chrysotile Amosite	Amosite and Chrysotile present in	Lee Kerridge
		111_SO_0150		,	Loose Fibrous Asbestos Debris	
1668126	PRAIRIE_AUK_TP112 4 1.50	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		112 SO 0150				_
1668127	PRAIRIE AUK TP119 3 1.50	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		119 SO 0150				
1668128	PRAIRIE_AUK_TP119 7 2.50	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		119 SO 0250				0
1668129	PRAIRIE_AUK_TP133 2 0.50	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		133 SO 0050				
1668130	PRAIRIE_AUK_TP152 6 2.00	PRAIRIE_AUK_TP	SOIL	Chrysotile	Chrysotile present in bundles	Lee Kerridge
		152 SO 0200				
1668131	PRAIRIE AUK TP153 4 1.10	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		153 SO 0110				
1668132	PRAIRIE_AUK_TP154 3 0.85	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		154 SO 0085				U U
1668133	PRAIRIE AUK TP155 3 0.70	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		155 SO 0070				U U
1668134	PRAIRIE AUK TP160 4 0.75	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		160 SO 0075				
1668135	PRAIRIE AUK TP170 4 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		170 SO 0100				U
1668557	PRAIRIE_AUK_TP164 3 0.70	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		164 SO 0070				U
1668558	PRAIRIE_AUK_TP164 5 1.30	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		164 SO 0130				U U
1668559	PRAIRIE AUK TP184 2 0.30	PRAIRIE_AUK_TP	SOIL	Amosite	Amosite present in bundles	Lee Kerridge
		184 SO 0030				
1668560	PRAIRIE AUK TP106 3 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		106 SO 0100				
1668561	PRAIRIE_AUK_TP116 3 1.30	PRAIRIE_AUK_TP	SOIL	Chrysotile	Bundle of Chrysotile fibres	Keith Wilson
		116 SO 0130		,		
1668562	PRAIRIE_AUK_TP117 8 3.00	PRAIRIE_AUK_TP	SOIL	Chrysotile	Bundle of Chrysotile fibres	Keith Wilson
		117 SO 0300				
1668563	PRAIRIE AUK TP118 3 1.20	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		118_SO_0120				
1668564	PRAIRIE_AUK_TP127 3 0.30	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		127 SO 0030				
1668565	PRAIRIE AUK TP127A 3 2.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
-		127A SO 0280				
1668566	PRAIRIE AUK TP140 3 1.00	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		140 SO 0100				
1668567	PRAIRIE AUK TP141 4 2.00	PRAIRIE_AUK_TP	SOIL	U/S	U/S	U/S
		141 SO 0200		-,-		
1668568	PRAIRIE_AUK_TP142 3 0.90	PRAIRIE_AUK_TP	SOIL	U/S	U/S	U/S
		142 SO 0090		-, -		
1668569	PRAIRIE_AUK_TP142 4 1.50	PRAIRIE_AUK_TP	SOIL	U/S	U/S	U/S
		142_SO_0150		-, -	-,-	-, -

Summary of Asbestos Analysis

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

round Investigation Wor Sample

		Sample				
Lab No	Sample ID	Location	Material Type	Result	Comment*	Analyst
1668570	PRAIRIE_AUK_TP143 3 0.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		143_SO_0080				
1668571	PRAIRIE_AUK_TP143 6 1.60	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		143_SO_0160				
1668572	PRAIRIE_AUK_TP151 5 1.20	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		151_SO_0120				
1668657	PRAIRIE_AUK_TP139 4 1.10	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		139_SO_0110				
1668869	PRAIRIE_AUK_TP144 3 0.80	PRAIRIE_AUK_TP	SOIL	Chrysotile	Bundles of Chrysotile fibres	Keith Wilson
		144_SO_0080				
1669251	PRAIRIE_AUK_TP112 7 2.10	PRAIRIE_AUK_TP	SOIL	NAD	none	Lee Kerridge
		112_SO_0210				
1670142	PRAIRIE_AUK_TP194A 1 1.40	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		194A_SO_0140				
1670143	PRAIRIE_AUK_TP196A 1 1.40	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		196A_SO_0140				
1670144	PRAIRIE_AUK_TP201 1 3.60	PRAIRIE_AUK_TP	SOIL	NAD	none	Joanne Luscombe
		201_SO_0360				
1670502	PRAIRIE_AUK_TP193 1 0.80	PRAIRIE_AUK_TP	SOIL	NAD	none	Keith Wilson
		193_SO_0080				
1675450	PRAIRIE_AUK_BH101 1 3.00	PRAIRIE_AUK_B	SOIL	NAD	none	Keith Wilson
		H101_SO_0300				
1675451	PRAIRIE_AUK_BH107 1 3.00	PRAIRIE_AUK_B	SOIL	NAD	none	Keith Wilson
		H107_SO_0300				
1700277	PRAIRIE_AUK_SW4 1 0.00	PRAIRIE_AUK_S	SOIL	NAD	none	D Wilkinson
		W4_SO_0000				

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

contract ritle Traine Site Ground investigation works						
		Lab No			1665140	1665141
					PRAIRIE_AUK	PRAIRIE_AUK
		Sample ID	_TP101	_TP172	_TP108	_TP108
		Depth	1.00	0.80	1.00	2.00
		Other ID	5	3	5	8
	Sai	mple Type	SOIL	SOIL	SOIL	SOIL
	Sam	pling Date	01/04/2020	06/04/2020	06/04/2020	06/04/2020
	Sam	oling Time				
Test	Method	Units				
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	0.001	0.001	0.001	0.002
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	na	na	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	0.001	0.001	0.001	0.002
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na
Breakdown of Gravimetric Analysis (a)						
Mass of Sample		g	853.49	782.89	1098.85	761.41
ACMs present*		type				
Mass of ACM in sample		g				
% ACM by mass		%				
% asbestos in ACM		%				
% asbestos in sample		%				
Breakdown of Detailed Gravimetric Analysis (b)						
% Amphibole bundles in sample		Mass %	na	0.001	0.001	0.002
% Chrysotile bundles in sample		Mass %	0.001	na	na	na
Breakdown of PCOM Analysis (c)						
% Amphibole fibres in sample		Mass %	na	na	na	na
% Chrysotile fibres in sample		Mass %	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)						
Amphibole fibres		Fibres/g	na	na	na	na
Chrysotile fibres		Fibres/g	na	na	na	na

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

Contract The Frame Site Ground Investigation works	b					
		Lab No		1665589	1665290	
			_		PRAIRIE_AUK_	
		Sample ID	_TP113	TP124	TP122	TP138
	Depth			1.50	1.00	1.20
		Other ID	5	5	3	3
	Sai	mple Type	SOIL	SOIL	SOIL	SOIL
	Sam	pling Date	06/04/2020	08/04/2020	08/04/2020	09/04/2020
	Sam	oling Time				
Test	Method	Units				
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	0.005	0.002	0.002	0.020
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	na	0.002	0.020
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	0.005	0.002	na	na
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na
Breakdown of Gravimetric Analysis (a)						
Mass of Sample		g	715.05	918.67	1153.64	1191.05
ACMs present*		type			Cement	LFAD
Mass of ACM in sample		g			0.13	0.29
% ACM by mass		%			0.01	0.02
% asbestos in ACM		%			15	85.00
% asbestos in sample		%			0.002	0.020
Breakdown of Detailed Gravimetric Analysis (b)						
% Amphibole bundles in sample		Mass %	na	na	na	na
% Chrysotile bundles in sample		Mass %	0.005	0.002	na	na
Breakdown of PCOM Analysis (c)						
% Amphibole fibres in sample		Mass %	na	na	na	na
% Chrysotile fibres in sample		Mass %	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)						
Amphibole fibres		Fibres/g	na	na	na	na
Chrysotile fibres		Fibres/g	na	na	na	na

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

Contract The France Site Ground Investigation work	5					
		Lab No	1665452	1665453	1665454	1665992
				PRAIRIE_AUK_		
		Sample ID	TP149	TP168	TP173	TP156A
	Depth			0.05	0.90	0.30
		Other ID	3	1	3	2
	Sai	mple Type	SOIL	SOIL	SOIL	SOIL
	Sam	pling Date	09/04/2020	09/04/2020	09/04/2020	14/04/2020
	Sam	oling Time				
Test	Method	Units				L
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	< 0.001	< 0.001	< 0.001	0.001
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	na	na	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	<0.001	<0.001	<0.001	0.001
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na
Breakdown of Gravimetric Analysis (a)						
Mass of Sample		g	965.87	1101.46	952.28	795.26
ACMs present*		type				
Mass of ACM in sample		g				
% ACM by mass		%				
% asbestos in ACM		%				
% asbestos in sample		%				
Breakdown of Detailed Gravimetric Analysis (b)						
% Amphibole bundles in sample		Mass %	na	na	na	na
% Chrysotile bundles in sample		Mass %	<0.001	<0.001	<0.001	0.001
Breakdown of PCOM Analysis (c)						
% Amphibole fibres in sample		Mass %	na	na	na	na
% Chrysotile fibres in sample		Mass %	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)						
Amphibole fibres		Fibres/g	na	na	na	na
Chrysotile fibres		Fibres/g	na	na	na	na

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

contract rite Traine Site Ground investigation works						
		Lab No	1665995			
			PRAIRIE_AUK_			
		Sample ID	TP163	TP135	TP169	TP139B
	Depth			1.30	1.50	0.30
		Other ID	3	5	3	3
	Sai	mple Type	SOIL	SOIL	SOIL	SOIL
	Sam	pling Date	14/04/2020	15/04/2020	15/04/2020	16/04/2020
	Sam	oling Time				
Test	Method	Units				
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	< 0.001	< 0.001	< 0.001	< 0.001
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	0.001	na	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	<0.001	na	<0.001	<0.001
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na
Breakdown of Gravimetric Analysis (a)	L					
Mass of Sample		g	483.48	1011.94	1335.01	780.11
ACMs present*		type		LFAD		
Mass of ACM in sample		g		0.01		
% ACM by mass		%		0.00		
% asbestos in ACM		%		85.00		
% asbestos in sample		%		0.001		
Breakdown of Detailed Gravimetric Analysis (b)						
% Amphibole bundles in sample		Mass %	na	na	na	na
% Chrysotile bundles in sample		Mass %	<0.001	na	<0.001	<0.001
Breakdown of PCOM Analysis (c)						
% Amphibole fibres in sample		Mass %	na	na	na	na
% Chrysotile fibres in sample		Mass %	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)						
Amphibole fibres		Fibres/g	na	na	na	na
Chrysotile fibres		Fibres/g	na	na	na	na

Summary of Asbestos Quantification Analysi Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

Contract ritle Frame site Ground investigation wo	1 1 2					
		Lab No	1666614	1666615	1666616	1667233
					PRAIRIE_AUK_	
		Sample ID	TP150	TP159	TP190A	TP128
		Depth	1.50	0.60	1.10	0.90
		Other ID	3	3	3	3
	Sai	mple Type	SOIL	SOIL	SOIL	SOIL
	Sam	pling Date	16/04/2020	16/04/2020	16/04/2020	17/04/2020
	Sam	oling Time				
Test	Method	Units				
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	0.009	0.002	0.003	< 0.001
Gravimetric Quantification (a)	DETSC 1102	Mass %	0.009	0.002	0.003	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	na	na	na	<0.001
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na
Breakdown of Gravimetric Analysis (a)						
Mass of Sample		g	932.90	695.59	1052.76	649.46
ACMs present*		type	LFAD	LFAD	LFAD	
Mass of ACM in sample		g	0.10	0.01	0.04	
% ACM by mass		%	0.01	0.00	0.00	
% asbestos in ACM		%	85	85	85	
% asbestos in sample		%	0.009	0.002	0.003	
Breakdown of Detailed Gravimetric Analysis (b)					•	
% Amphibole bundles in sample		Mass %	na	na	na	na
% Chrysotile bundles in sample		Mass %	na	na	na	<0.001
Breakdown of PCOM Analysis (c)						
% Amphibole fibres in sample		Mass %	na	na	na	na
% Chrysotile fibres in sample		Mass %	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)						
Amphibole fibres		Fibres/g	na	na	na	na
Chrysotile fibres		Fibres/g	na	na	na	na

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

Contract rule Frame site Ground investigation works						
		Lab No	1667236		1667501	1667505
			PRAIRIE_AUK_ TP147	PRAIRIE_AUK_		
	Sample ID			TP157	TP120A	TP166
		Depth	1.50	0.80	1.00	0.45
		Other ID	4	2	3	3
	Sai	mple Type	SOIL	SOIL	SOIL	SOIL
	Sam	pling Date	17/04/2020	17/04/2020	20/04/2020	20/04/2020
	Sam	pling Time				
Test	Method	Units				
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	< 0.001	< 0.001	0.001	0.001
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	na	na	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	<0.001	<0.001	0.001	0.001
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na
Breakdown of Gravimetric Analysis (a)						
Mass of Sample		g	1033.16	999.70	925.95	1405.15
ACMs present*		type				
Mass of ACM in sample		g				
% ACM by mass		%				
% asbestos in ACM		%				
% asbestos in sample		%				
Breakdown of Detailed Gravimetric Analysis (b)						
% Amphibole bundles in sample		Mass %	<0.001	<0.001	na	0.001
% Chrysotile bundles in sample		Mass %	na	na	0.001	na
Breakdown of PCOM Analysis (c)						
% Amphibole fibres in sample		Mass %	na	na	na	na
% Chrysotile fibres in sample		Mass %	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)						
Amphibole fibres		Fibres/g	na	na	na	na
Chrysotile fibres		Fibres/g	na	na	na	na

Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

contract rite Traine Site Ground investigation works	,					
		Lab No	1668120		1668130	1668559
			PRAIRIE_AUK_			
		Sample ID	TP102	TP111	TP152	TP184
		Depth	3.00	1.50	2.00	0.30
		11	4	6	2	
	Sai	mple Type	SOIL	SOIL	SOIL	SOIL
	Sam	pling Date	21/04/2020	22/04/2020	22/04/2020	16/04/2020
	Sam	oling Time				
Test	Method	Units				
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	< 0.001	0.002	0.002	< 0.001
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	0.002	na	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	<0.001	na	0.002	<0.001
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na
Breakdown of Gravimetric Analysis (a)	t.					
Mass of Sample		g	709.21	825.28	1135.68	1256.23
ACMs present*		type		LFAD		
Mass of ACM in sample		g		0.02		
% ACM by mass		%		0.00		
% asbestos in ACM		%		85		
% asbestos in sample		%		0.002		
Breakdown of Detailed Gravimetric Analysis (b)	· · ·				•	
% Amphibole bundles in sample		Mass %	na	na	na	<0.001
% Chrysotile bundles in sample		Mass %	<0.001	na	0.002	na
Breakdown of PCOM Analysis (c)				•	•	
% Amphibole fibres in sample		Mass %	na	na	na	na
% Chrysotile fibres in sample		Mass %	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)						
Amphibole fibres		Fibres/g	na	na	na	na
Chrysotile fibres		Fibres/g	na	na	na	na

Summary of Asbestos Quantification Analysi Soil Samples

Our Ref Combined 4251 Prairie Client Ref 4251 Contract Title Prairie Site Ground Investigation Works

contract the state of our a mostigation work.	-					
		Lab No	1668561	1668562		
		_		PRAIRIE_AUK_		
		Sample ID	TP116	TP117	TP144	
		Depth	1.30	3.00	0.80	
		Other ID	3	8	3	
	Sample Type					
	Sampling Date					
	Sam	pling Time				
Test	Method	Units				
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	< 0.001	< 0.001	0.001	
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	na	na	
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	<0.001	<0.001	0.001	
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na	na	
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	
Breakdown of Gravimetric Analysis (a)					1	
Mass of Sample		g	942.18	883.57	1140.96	
ACMs present*		type				
Mass of ACM in sample		g				
% ACM by mass		%				
% asbestos in ACM		%				
% asbestos in sample		%				
Breakdown of Detailed Gravimetric Analysis (b)						
% Amphibole bundles in sample		Mass %	na	na	na	
% Chrysotile bundles in sample		Mass %	<0.001	<0.001	0.001	
Breakdown of PCOM Analysis (c)						
% Amphibole fibres in sample		Mass %	na	na	na	
% Chrysotile fibres in sample		Mass %	na	na	na	
Breakdown of Potentially Respirable Fibre Analysis (d)	·					
Amphibole fibres		Fibres/g	na	na	na	
Chrysotile fibres		Fibres/g	na	na	na	

Information in Support of the Analytical Results

Our Ref Combined 4251 Prairie *Client Ref* 4251 *Contract* Prairie Site Ground Investigation Works

Containers Received & Deviating Samples

Lab No Sample ID Sample IC Containers Received tests tests 1663605 PRAIRE_AUK_TF132 1.30 02/04/20 G1 250ml x2, G1 60ml x2, PT 1L x2			Date		Holding time exceeded for	Inappropriate container for
SOIL C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>	Lab No	Sample ID	Sampled	Containers Received	tests	tests
1663606 PRAIRIE_AUK_TP131 1.80 02/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663736 PRAIRIE_AUK_TP101 1.00 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663736 PRAIRIE_AUK_TP101 2.20 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRE_AUK_TP101 2.20 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRE_AUK_TP104 1.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRE_AUK_TP105 2.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRE_AUK_TP172 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50lL 050L 05/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50lL 05/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50L 1665138 PRAIRE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50L 1665136 PRAIRE_AUK_TP178 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50L 1665137 PRAIRE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50L 1665138 PRAIRE_AUK_TP107 1.80 06/04/20	1663605	PRAIRIE_AUK_TP132 1.30	02/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL OI/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663734 SOIL 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663735 PRAIRIE_AUK_TP101 1.20 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663736 PRAIRIE_AUK_TP104 1.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRIE_AUK_TP105 2.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRIE_AUK_BH104 5.50 03/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663738 PRAIRIE_AUK_BH104 5.50 03/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665133 PRAIRIE_AUK_TP172 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665138 PRAIRIE_AUK_TP175 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665137 PRAIRE_AUK_TP175 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665139 PRAIRE_AUK_TP107 0.80						
1663734 PRAIRIE_AUK_TP101 1.00 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663735 SOIL 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663736 PRAIRIE_AUK_TP104 1.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRIE_AUK_TP104 1.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRIE_AUK_TP105 2.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663738 PRAIRIE_AUK_TP172 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 <td< td=""><td>1663606</td><td></td><td>02/04/20</td><td>GJ 250ml x2, GJ 60ml x2, PT 1L x2</td><td></td><td></td></td<>	1663606		02/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL <th< td=""><td>1663734</td><td></td><td>01/04/20</td><td>GI 250ml x2 GI 60ml x2 PT 11 x2</td><td></td><td></td></th<>	1663734		01/04/20	GI 250ml x2 GI 60ml x2 PT 11 x2		
1663735 PRAIRIE_AUK_TP101 2.20 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663736 PRAIRIE_AUK_TP104 1.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRIE_AUK_TP105 2.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRIE_AUK_TP105 2.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRIE_AUK_BH104 5.50 03/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 501L 501L GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665138 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 501L S01L GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665135 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 501L S01L GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665136 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665137 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665138 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665140 PRAIRIE_AUK_TP108	1003734		01/04/20			
1663736 PRAIRIE_AUK_TP104 1.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRIE_AUK_TP105 2.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663737 PRAIRIE_AUK_TP105 2.50 03/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665133 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665136 PRAIRIE_AUK_TP175 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665136 PRAIRIE_AUK_TP175 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665137 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665139 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL SOIL GJ 250ml x2, GJ 60ml x2	1663735		01/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL SOIL 1663737 PRAIRIE_AUK_TP105 2.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663978 PRAIRIE_AUK_BH104 5.50 03/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665135 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665136 PRAIRIE_AUK_TP178 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665138 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL SOIL GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665140		SOIL				
1663737 PRAIRIE_AUK_TP105 2.50 01/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1663978 PRAIRIE_AUK_BH104 5.50 03/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665133 PRAIRIE_AUK_TP172 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 06/04/20 1665134 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 06/04/20 1665135 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 06/04/20 1665137 PRAIRIE_AUK_TP178 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 06/04/20 1665138 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 06/04/20 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 01/04/20 50IL 06/04/20 </td <td>1663736</td> <td>PRAIRIE_AUK_TP104 1.50</td> <td>01/04/20</td> <td>GJ 250ml x2, GJ 60ml x2, PT 1L x2</td> <td></td> <td></td>	1663736	PRAIRIE_AUK_TP104 1.50	01/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL SOIL SOIL SOIL 1663978 PRAIRIE_AUK_BH104 5.00 03/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL						
1663978 PRAIRIE_AUK_BH104 5.50 03/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665133 PRAIRIE_AUK_TP172 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665134 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 0 1665135 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 0 1665135 PRAIRIE_AUK_TP178 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 050L GJ 250ml x2, GJ 60ml x2, PT 1L x2 0 1665137 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 0 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 0 0 1665138 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 0 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 0 0 0 1665140 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1	1663/3/		01/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL <th< td=""><td>1663978</td><td></td><td>03/04/20</td><td>GI 250ml x2 GI 60ml x2 PT 11 x2</td><td></td><td></td></th<>	1663978		03/04/20	GI 250ml x2 GI 60ml x2 PT 11 x2		
SOIL OG/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665134 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665135 PRAIRIE_AUK_TP175 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665136 PRAIRIE_AUK_TP178 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665137 PRAIRIE_AUK_TP105 5.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665138 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665139 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665140 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 01 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP113 1.30 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 01 01 01 01 1665143 PRAIRIE_AUK_TP175 0.80	1003370		03/04/20			
1665134 PRAIRIE_AUK_TP175 0.80 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665135 PRAIRIE_AUK_TP175 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665136 PRAIRIE_AUK_TP178 0.80 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665136 PRAIRIE_AUK_TP178 0.80 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665137 PRAIRIE_AUK_TP178 0.80 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665138 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL 1665139 PRAIRIE_AUK_TP107 0.80 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665140 PRAIRIE_AUK_TP108 1.00 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 2.00 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665142 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665286 PRAIRIE_AUK_MIN2 2.50 08/04/20	1665133	PRAIRIE_AUK_TP172 0.80	06/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL <th< td=""><td></td><td>SOIL</td><td></td><td></td><td></td><td></td></th<>		SOIL				
1665135 PRAIRIE_AUK_TP175 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665136 PRAIRIE_AUK_TP178 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665137 PRAIRIE_AUK_BH106 5.50 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665138 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665138 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 06/04/20 1665139 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 06/04/20 1665140 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 06/04/20 1665142 PRAIRIE_AUK_TP13 1.30 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_BH103 2.50 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2	1665134	PRAIRIE_AUK_TP175 0.80	06/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL Ob/O4/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665136 PRAIRIE_AUK_TP178 0.80 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665137 PRAIRIE_AUK_BH106 5.50 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665138 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665139 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665140 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 2.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665142 PRAIRIE_AUK_TP108 2.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP135 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_BH103 2.50 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665287 PRAIRIE_AUK_SW1 0.00 09/04/20 PB 1L	1005125		00/04/20			
1665136 PRAIRIE_AUK_TP178 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665137 PRAIRIE_AUK_BH106 5.50 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665138 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665139 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665140 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 2.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665142 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 061 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665142 PRAIRIE_AUK_TP113 1.30 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 50IL 01 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665286 PRAIRIE_AUK_BH103 2.50 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665287 PRAIRIE_AUK_SW1 0.00 09/04/20 PB 1L <td>1005135</td> <td></td> <td>06/04/20</td> <td>GJ 250ml x2, GJ 60ml x2, PT 1L x2</td> <td></td> <td></td>	1005135		06/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL Control Solu	1665136		06/04/20	GJ 250ml x2. GJ 60ml x2. PT 1L x2		
SOIL SOIL SOIL 1665138 PRAIRIE_AUK_TP107 1.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665139 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665140 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 2.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 2.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665142 PRAIRIE_AUK_TP113 1.30 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665286 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665286 PRAIRIE_AUK_BH103 2.50 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665287 PRAIRIE_AUK_SW1 0.00 09/04/20 PB 1L						
1665138 PRAIRIE_AUK_TP107 1.80 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665139 PRAIRIE_AUK_TP107 0.80 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665140 PRAIRIE_AUK_TP108 1.00 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 2.00 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665142 PRAIRIE_AUK_TP113 1.30 SOIL 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 LEACHATE 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665286 PRAIRIE_AUK_BH103 2.50 SOIL 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665287 PRAIRIE_AUK_SW1 0.00 09/04/20 PB 1L	1665137	PRAIRIE_AUK_BH106 5.50	06/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
1665139 PRAIRIE_AUK_TP107 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665140 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 2.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 2.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665142 PRAIRIE_AUK_TP113 1.30 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665286 PRAIRIE_AUK_BH103 2.50 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665287 PRAIRIE_AUK_SW1 0.00 09/04/20 PB 1L	1665138		06/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL <th< td=""><td>1665120</td><td></td><td>06/04/20</td><td>GL250mLv2 GL60mLv2 PT 11 v2</td><td></td><td></td></th<>	1665120		06/04/20	GL250mLv2 GL60mLv2 PT 11 v2		
1665140 PRAIRIE_AUK_TP108 1.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP108 2.00 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665141 PRAIRIE_AUK_TP113 1.30 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665142 PRAIRIE_AUK_TP113 1.30 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665286 PRAIRIE_AUK_BH103 2.50 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665287 PRAIRIE_AUK_SW1 0.00 09/04/20 PB 1L	1003139		00/04/20			
SOIL SOIL <th< td=""><td>1665140</td><td></td><td>06/04/20</td><td>GJ 250ml x2, GJ 60ml x2, PT 1L x2</td><td></td><td></td></th<>	1665140		06/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL <th< td=""><td>L</td><td></td><td></td><td></td><td></td><td></td></th<>	L					
1665142 PRAIRIE_AUK_TP113 1.30 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2	1665141	PRAIRIE_AUK_TP108 2.00	06/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
SOIL SOIL <th< td=""><td></td><td></td><td>0.0 /0.0 /0.0</td><td></td><td></td><td></td></th<>			0.0 /0.0 /0.0			
1665143 PRAIRIE_AUK_TP175 0.80 06/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665286 PRAIRIE_AUK_BH103 2.50 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665287 PRAIRIE_AUK_SW1 0.00 09/04/20 PB 1L	1665142		06/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
LEACHATE Image: Constraint of the second secon	1665143		06/04/20	GI 250ml x2 GI 60ml x2 PT 11 x2		
1665286 PRAIRIE_AUK_BH103 2.50 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 1665287 PRAIRIE_AUK_SW1 0.00 09/04/20 PB 1L	1003113		00/04/20			
SOIL 97000000000000000000000000000000000000	1665286		08/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
		SOIL				
	1665287		09/04/20	PB 1L		
	1005200	WATER	00/04/22			
1665288 PRAIRIE_AUK_TP115 1.90 08/04/20 GJ 250ml x2, GJ 60ml x2, PT 1L x2 SOIL	1002788		08/04/20	GJ 250MI X2, GJ 60MI X2, PT 1L X2		
1665289 PRAIRIE_AUK_TP115 0.50 08/04/20 PB 1L	1665289		08/04/20	PB 1I		
WATER	2000200		50, 01, 20			

Information in Support of the Analytical Results

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1665290	PRAIRIE_AUK_TP122 1.00 SOIL	08/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665291	PRAIRIE_AUK_TP123 0.60 SOIL	08/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665292	PRAIRIE_AUK_TP185 4.30	08/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665293	PRAIRIE_AUK_TP186 0.50	07/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665294	PRAIRIE_AUK_TP186 1.00 WATER	07/04/20	PB 1L x2		
1665295	PRAIRIE_AUK_TP188 1.00	08/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665450	PRAIRIE_AUK_TP121 1.50	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665451	PRAIRIE_AUK_TP138 1.20	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665452	PRAIRIE_AUK_TP149 1.30	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665453	PRAIRIE_AUK_TP168 0.05	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665454	PRAIRIE_AUK_TP173 0.90	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665455	PRAIRIE_AUK_SURFACE1 0.00 SOIL	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665582	PRAIRIE_AUK_TP108 2.00 LEACHATE	06/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665588	PRAIRIE_AUK_TP114 0.90	07/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665589	PRAIRIE_AUK_TP124 1.50 SOIL	08/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665590	PRAIRIE_AUK_TP174 0.80	08/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665591	PRAIRIE_AUK_TP174 1.60 SOIL	08/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665592	PRAIRIE_AUK_TP176 0.90 SOIL	07/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665593	PRAIRIE_AUK_TP177 0.60 SOIL	07/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665594	PRAIRIE_AUK_TP189 3.00 SOIL	07/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665595	PRAIRIE_AUK_TP114 0.90 LEACHATE	07/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665610	PRAIRIE_AUK_TP179 1.40 SOIL	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665611	PRAIRIE_AUK_TP179 2.00 SOIL	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665612	PRAIRIE_AUK_TP181 0.60 SOIL	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665613	PRAIRIE_AUK_TP182 0.90 SOIL	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1665614	PRAIRIE_AUK_TP179 1.40 LEACHATE	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665615	PRAIRIE_AUK_TP179 2.00 LEACHATE	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665616	PRAIRIE_AUK_TP181 0.60 LEACHATE	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665617	PRAIRIE_AUK_TP182 0.90 LEACHATE	09/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665990	PRAIRIE_AUK_TP145 1.60 SOIL	14/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665991	PRAIRIE_AUK_TP146C 1.30 SOIL	14/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665992	PRAIRIE_AUK_TP156A 0.30 SOIL	14/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665993	PRAIRIE_AUK_TP162 1.70 SOIL	14/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665994	PRAIRIE_AUK_TP180 0.30	14/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665995	PRAIRIE_AUK_TP163 1.20 SOIL	14/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665996	PRAIRIE_AUK_TP145 1.60 LEACHATE	14/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1665997	PRAIRIE_AUK_TP163 1.20 LEACHATE	14/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666343	PRAIRIE_AUK_TP135 1.30	15/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666344	PRAIRIE_AUK_TP136 0.80 SOIL	15/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666345	PRAIRIE_AUK_TP136 2.90 SOIL	15/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666346	PRAIRIE_AUK_TP165 1.00 SOIL	15/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666347	PRAIRIE_AUK_TP167 2.50 SOIL	15/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666348	PRAIRIE_AUK_TP169 1.50 SOIL	15/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666349	PRAIRIE_AUK_TP136 0.80 LEACHATE	15/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666610	PRAIRIE_AUK_BH108 2.50 SOIL	15/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666611	PRAIRIE_AUK_TP139B 0.30 SOIL	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666612	PRAIRIE_AUK_TP139B 3.30 SOIL	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666613	PRAIRIE_AUK_TP148A 1.40 SOIL	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666614	PRAIRIE_AUK_TP150 1.50 SOIL	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666615	PRAIRIE_AUK_TP159 0.60	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1666616	PRAIRIE_AUK_TP190A 1.10 SOIL	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1667231	PRAIRIE_AUK_BH105 3.00 SOIL	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667232	PRAIRIE_AUK_TP126 2.60 SOIL	17/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667233	PRAIRIE_AUK_TP128 0.90	17/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667234	PRAIRIE_AUK_TP129 2.10	17/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667235	PRAIRIE_AUK_TP130 1.00	17/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667236	PRAIRIE_AUK_TP147 1.50	17/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667237	PRAIRIE_AUK_TP158 1.30	17/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667238	PRAIRIE_AUK_TP157 0.80	17/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667239	PRAIRIE_AUK_TP128 0.90	17/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667501	PRAIRIE_AUK_TP120A 1.00	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667502	PRAIRIE_AUK_TP134 1.00	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667503	PRAIRIE_AUK_TP134 2.00	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667504	PRAIRIE_AUK_TP161 1.00	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667505	PRAIRIE_AUK_TP166 0.45 SOIL	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667506	PRAIRIE_AUK_TP166 1.20	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667507	PRAIRIE_AUK_TP171 0.75	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1667508	PRAIRIE_AUK_TP187 0.70	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668118	PRAIRIE_AUK_BH110 3.00	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668119	PRAIRIE_AUK_TP102 1.00	21/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668120	PRAIRIE_AUK_TP102 3.00	21/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668121	PRAIRIE_AUK_TP103 1.00	21/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668122	PRAIRIE_AUK_TP109 1.00	21/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668123	PRAIRIE_AUK_TP110 1.00	21/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668124	PRAIRIE_AUK_TP110 2.00	21/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668125	PRAIRIE_AUK_TP111 1.50	22/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668126	PRAIRIE_AUK_TP112 1.50	22/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1668127	PRAIRIE_AUK_TP119 1.50 SOIL	22/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668128	PRAIRIE_AUK_TP119 2.50 SOIL	22/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668129	PRAIRIE_AUK_TP133 0.50	22/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668130	PRAIRIE_AUK_TP152 2.00	22/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668131	PRAIRIE_AUK_TP153 1.10 SOIL	22/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668132	PRAIRIE_AUK_TP154 0.85	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668133	PRAIRIE_AUK_TP155 0.70	21/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668134	PRAIRIE_AUK_TP160 0.75	21/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668135	PRAIRIE_AUK_TP170 1.00	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668136	PRAIRIE_AUK_TP110 1.00 LEACHATE	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668137	PRAIRIE_AUK_TP170 1.00	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668557	PRAIRIE_AUK_TP164 0.70	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668558	PRAIRIE_AUK_TP164 1.30	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668559	PRAIRIE_AUK_TP184 0.30	16/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668560	PRAIRIE_AUK_TP106 1.00	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668561	PRAIRIE_AUK_TP116 1.30	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668562	PRAIRIE_AUK_TP117 3.00	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668563	PRAIRIE_AUK_TP118 1.20	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668564	PRAIRIE_AUK_TP127 0.30	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668565	PRAIRIE_AUK_TP127A 2.80	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668566	PRAIRIE_AUK_TP140 1.00 SOIL	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668567	PRAIRIE_AUK_TP141 2.00	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668568	PRAIRIE_AUK_TP142 0.90	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668569	PRAIRIE_AUK_TP142 1.50	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668570	PRAIRIE_AUK_TP143 0.80	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668571	PRAIRIE_AUK_TP143 1.60	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1668572	PRAIRIE_AUK_TP151 1.20 SOIL	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668573	PRAIRIE_AUK_TP140 1.00 LEACHATE	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668574	PRAIRIE_AUK_TP141 2.00 LEACHATE	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668575	PRAIRIE_AUK_TP142 1.50 LEACHATE	23/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668657	PRAIRIE_AUK_TP139 1.10 SOIL	16/04/20	No containers logged		
1668869	PRAIRIE_AUK_TP144 0.80	24/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1668870	PRAIRIE_AUK_TP144 0.80	24/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1669251	PRAIRIE_AUK_TP112 2.10	22/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1669252	PRAIRIE_AUK_TP112 2.10 LEACHATE	22/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1670142	PRAIRIE_AUK_TP194A 1.40 SOIL	29/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1670143	PRAIRIE_AUK_TP196A 1.40 SOIL	29/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1670144	PRAIRIE_AUK_TP201 3.60	28/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1670145	PRAIRIE_AUK_TP201 3.60	28/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1670502	PRAIRIE_AUK_TP193 0.80	30/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1671485	PRAIRIE_AUK_BH102 1.10- 7.20 WATER	05/05/20	GB 1L x3, GV, PB 1L		
1671486	PRAIRIE_AUK_BH103 2.25- 8.50 WATER	05/05/20	GB 1L x3, GV, PB 1L		
1671487	PRAIRIE_AUK_BH104 6.40- 18.50 WATER	05/05/20	GB 1L x3, GV, PB 1L		
1671488	PRAIRIE_AUK_BH105 4.60- 11.00 WATER	05/05/20	GB 1L x3, GV, PB 1L		
1671489	PRAIRIE_AUK_BH107 3.16- 8.00 WATER	05/05/20	GB 1L x3, GV, PB 1L		
1671490	PRAIRIE_AUK_BH109 5.44- 11.80 WATER	05/05/20	GB 1L x3, GV, PB 1L		
1671899	PRAIRIE_AUK_BH101 2.00- 10.00 WATER	06/05/20	GB 1L x2, GV, PB 1L		
1671900	PRAIRIE_AUK_BH101 3.00- 16.50 WATER	06/05/20	GB 1L x2, GV, PB 1L		

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1671901	PRAIRIE_AUK_BH106 3.94- 10.00 WATER	06/05/20	GB 1L x2, GV, PB 1L		
1671902	PRAIRIE_AUK_BH108 2.20- 6.00 WATER	06/05/20	GB 1L x2, GV, PB 1L		
1671903	PRAIRIE_AUK_BH108 5.00- 14.00 WATER	06/05/20	GB 1L x2, GV, PB 1L		
1671904	PRAIRIE_AUK_BH110 4.00- 20.80 WATER	06/05/20	GB 1L x2, GV, PB 1L		
1675436	PRAIRIE_AUK_TP123 0.60 LEACHATE	08/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1675439	PRAIRIE_AUK_TP120A 1.00 LEACHATE	20/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1675441	PRAIRIE_AUK_TP103 1.00 LEACHATE	20/04/20	No containers logged		
1675442	PRAIRIE_AUK_TP194A 1.40 LEACHATE	29/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1675443	PRAIRIE_AUK_TP196A 1.40 LEACHATE	29/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1675450	PRAIRIE_AUK_BH101 3.00 SOIL	27/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1675451	PRAIRIE_AUK_BH107 3.00 SOIL	24/04/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
1685108	PRAIRIE_AUK_SW1 0.00 WATER	15/06/20	GB 1L x2, GV, PB 1L, P(other)		
1685109	PRAIRIE_AUK_SW2 0.00 WATER	15/06/20	GB 1L x2, GV, PB 1L, P(other)		
1688245	PRAIRIE_AUK_BH101 1.77- 10.00 WATER	17/06/20	GB 1L x2, GV, PB 1L, P(other)		

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1688246	PRAIRIE_AUK_BH101 1.78-	17/06/20	GB 1L x2, GV, PB 1L, P(other)		
	16.50 WATER				
1688247	PRAIRIE_AUK_BH102 0.83-	18/06/20	GB 1L x2, GV, PB 1L, P(other)		
	7.20 WATER				
1688248	PRAIRIE_AUK_BH103 1.71-	17/06/20	GB 1L x2, GV, PB 1L, P(other)		
	8.50 WATER				
1688249	PRAIRIE_AUK_BH104 4.06-	17/06/20	GB 1L x2, GV, PB 1L, P(other)		
	18.50 WATER				
1688250	PRAIRIE_AUK_BH105 4.49-	18/06/20	GB 1L x2, GV, PB 1L, P(other)		
	11.00 WATER				
1688251	PRAIRIE_AUK_BH106 2.73-	17/06/20	GB 1L x2, GV, PB 1L, P(other)		
	10.00 WATER				
1688252	PRAIRIE_AUK_BH107 3.21-	19/06/20	GB 1L x2, GV, PB 1L		
	8.00 WATER				
1688253	PRAIRIE_AUK_BH108 1.14-	18/06/20	GB 1L x2, GV, PB 1L, P(other)		
	6.00 WATER				
1688254	PRAIRIE_AUK_BH108 4.95-	18/06/20	GB 1L x2, GV, PB 1L, P(other)		
	14.00 WATER				
1688255	PRAIRIE_AUK_BH109 5.97-	19/06/20	GB 1L x2, GV, PB 1L		
	11.80 WATER				
1688256	PRAIRIE_AUK_BH110 3.84-	19/06/20	GB 1L x2, GV, PB 1L, P(other)		
	20.80 WATER				
1694889	PRAIRIE_AUK_BH101 1.69-	01/07/20	GB 1L, GV, PB 1L, PU		
	10.00 WATER				

Our Ref Combined 4251 Prairie *Client Ref* 4251 *Contract* Prairie Site Ground Investigation Works

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1694890	PRAIRIE_AUK_BH101 1.64-	01/07/20	GB 1L, GV, PB 1L, PU		
	16.50 WATER				
1694891	PRAIRIE_AUK_BH102 0.90-	02/07/20	GB 1L, GV, PB 1L, PU		
	7.20 WATER				
1694892	PRAIRIE_AUK_BH103 1.92-	01/07/20	GB 1L, GV, PB 1L, PU		
	8.50 WATER				
1694893	PRAIRIE_AUK_BH104 6.21-	02/07/20	GB 1L, GV, PB 1L, PU		
	18.50 WATER				
1694894	PRAIRIE_AUK_BH105 4.51-	02/07/20	GB 1L, GV, PB 1L, PU		
	11.00 WATER				
1694895	PRAIRIE_AUK_BH106 3.28-	02/07/20	GB 1L, GV, PB 1L, PU		
	10.00 WATER				
1694896	PRAIRIE_AUK_BH107 3.12-	02/07/20	GB 1L, GV, PB 1L, PU		
	8.00 WATER				
1694897	PRAIRIE_AUK_BH108 0.35-	02/07/20	GB 1L, GV, PB 1L, PU		
	6.00 WATER				
1694898	PRAIRIE_AUK_BH108 4.81-	02/07/20	GB 1L, GV, PB 1L, PU		
	14.00 WATER				
1694899	PRAIRIE_AUK_BH109 6.72-	02/07/20	GB 1L, GV, PB 1L, PU		
	11.80 WATER				
1694900	PRAIRIE_AUK_BH110 3.87-	02/07/20	GB 1L, GV, PB 1L, PU		
	20.80 WATER				
1700277	PRAIRIE_AUK_SW4 0.00	15/07/20	GJ 250ml x2, GJ 60ml x2, PT 1L x2		
	SOIL				
1700278	PRAIRIE_AUK_SW4 0.00	15/07/20	PB 1L x2		
	WATER				

Key: G-Glass P-Plastic J-Jar T-Tub B-Bottle V-Vial U-Tube

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

	. .		Limit of	Sample	• • • • • • • •		
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	рН	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301 DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301 DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301 DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301 DETSC2301	Cobalt	mg/kg	0.1	Air Dried	No	Yes	Yes
	Chromium			Air Dried	No		
DETSC2301		mg/kg	0.15			Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
			10	As Received	No	Yes	Yes

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

Quality Control

Quality Systems.

Derwentside Environmental Testing Services employs numerous measures to ensure high levels of confidence in the results produced. Our laboratory has been accredited by the United Kingdom Accreditation Service (UKAS) since its inception and operates in full compliance with the internationally recognised standard ISO17025 and the Environment Agency's MCERTS (Monitoring & Certification Scheme) standard for soils and waters, which provides greater assurance to all parties of the reliability of data from chemical analysis.

To obtain a copy of our full UKAS schedule visit the UKAS website at <u>www.ukas.org</u> and search for our laboratory number 2139.

Proficiency Testing Schemes.

DETS participates in seven external proficiency testing schemes in order to monitor and ensure the continuing quality of analysis. These schemes are:

Internal Quality Control.

DETS runs a strict internal quality control system. A minimum of 5% of all samples that undergo analysis in our laboratories are quality control samples. This way we can ensure a high level of confidence in all of the analytical data produced. In addition, MCERTS accredited tests must meet strict, ongoing limits for precision and bias in order to maintain their accreditation status.

SAMPLE HOLDING TIME INFORMATION

Soil

Analyte	Container type	Minimum sample required	Reference	Maximum holding	time from sampling
				pre drying/extraction ¹	post drying/extraction ²
Ammonium	Glass or plastic	20g	BS ISO18512:2007	1 week	
Anions	Glass or plastic	20g	BS ISO18512:2007	1 month	3 years
BTEX	60ml glass jar	Full container	EPA 8260	2 weeks	N/A
Conductivity	Glass or plastic	20g	BS ISO18512:2007	1 week	3 years
Cyanide	Glass or plastic	20g	EPA 9010B/9012	2 weeks	
Heavy metals	Glass or plastic	10g	BS ISO18512:2007	6 months	30 years
Hexavalent chromium	Glass or plastic	20g	BS ISO18512:2007	1 month	
Loss on ignition	Glass or plastic	10g	BS ISO18512:2007	1 month	
ОСР	Glass	20g	BS ISO18512:2007	1 month	
Oil & grease	Glass	20g	EPA 9070/1	1 month	
Organic matter/TOC	Glass or plastic	20g	BS ISO18512:2007	1 month	
РАН	Glass	20g	EPA 8100/8270	2 weeks	6 weeks
РСВ	Glass	20g	BS ISO18512:2007	1 month	
рН	Glass or plastic	20g	BS ISO18512:2007	1 week	3 years
Phenols	Glass	20g	EPA 8270	2 weeks	6 weeks
PRO	60ml glass jar	Full container	EPA 8015	2 weeks	N/A
Sulphide	Glass or plastic	20g	BRE SD1	3 weeks	1 month
SVOC	Glass	20g	EPA 8270	2 weeks	6 weeks
TEM/CEM	Glass	20g	EPA 418.1	2 weeks	6 weeks
Thiocyanate	Glass or plastic	20g	EPA 9251	No special requirement	
Total sulphur	Glass or plastic	20g	BS ISO18512:2007	1 month	3 years
TPH (C10-C40)	Glass	20g	EPA 418.1	2 weeks	6 weeks
VOC	60ml glass jar	Full container	EPA 8260	2 weeks	N/A

Sample storage environment 5°C

1. From sampling to extraction

2. Once extracted

Waters

Analyte	Container type	Min sample required (ml)	Reference	Preservative required	Max holding time until extraction
Alkalinity	Glass or plastic	100	EPA 310.2	none	2 weeks
Ammonium	Glass or plastic	20	ISO 5667 3:2012	Sulphuric acid	3 weeks
BOD	Glass or plastic	500	EPA 405.1 5120B	none	2 days
BTEX	Glass vial	Full container	Lab validation	none	2 weeks
Chloride	Glass or plastic	20	ISO 5667 3:2012	none	1 month
COD	Glass or plastic	20	ISO 5667 3:2012	Sulphuric acid	1 month
Conductivity/TDS	Glass or plastic	100	EPA 160.1	none	1 week
Cyanide	Plastic	50	EPA 9012/335.3	Sodium hydroxide	2 weeks
Hexavalent chromium	Glass or plastic	20	ISO 5667 3:2012	none	4 days
Metals	Glass or plastic	20	ISO 5667 3:2012	Nitric acid	1 month
Nitrate	Glass or plastic	20	EPA 353.2	none	2 days
Nitrite	Glass or plastic	20	EPA 600/4 079-020	none	2 days
ОСР	Glass	500	EPA 8081A/608	none	1 week
Oil & grease	Glass	500	ISO 5667 3:2012	Hydrochloric acid	1 month
PAH	Glass	500	ISO 5667 3:2012	none	1 week
рН	Glass or plastic	50	Lab validation	none	1 week
PCB	Glass	500	EPA 8082A	none	6 weeks
Phenols	Glass	500	ISO 5667 3:2012	Sulphuric acid	3 weeks
Phosphate	Glass or plastic	20	ISO 5667 3:2012	Sulphuric acid	1 month
PRO	Glass vial	Full container	EPA 8015	none	2 weeks
Sulphate	Glass or plastic	20	ISO 5667 3:2012	none	1 month
Sulphide	Plastic	50	ISO 5667 3:2012	NaOH/Zinc acetate	1 week
Suspended solids	Glass or plastic	100	EPA 160.2 2540D	none	1 week
SVOC	Glass	500	EPA 8270/625	none	1 week
ТОС	Glass or plastic	20	ISO 5667 3:2012	Sulphuric/Phosphoric acid	1 week
TON	Glass or plastic	20	EPA 353.2	none	1 month
ТРН/ЕРН	Glass	500	Lab validation	none	1 weeks
VOC	Glass vial	Full container	Lab validation	none	1 week

Sample storage environment 3°C ± 2°C

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETS 036	Leachate Preparation (NRA Method and BS EN 12457 Parts 1-3)	Leachates are prepared as per the NRA (1994) method and as per BS EN 12457 Parts 1 - 3 one and two stage leachate preparation.	Leaching Test Method for the Assessment of Contaminated Land, Interim Guidance, NRA(1994) BS EN 12457 Part 1,2 & 3	n/a	Not Accredited
DETS 073	Acid Neutralisation Capacity of Soils and Other Solids	ANC is a measure of the buffering capacity of soils and other waste materials. The analysis measures the amount of acid required to bring the sample to a fixed pH. The initial pH of the sample extract must be measured before analysis begins. Analysis is performed by the addition of acid in conjunction with pH measurement by pH meter until the specified pH has been reached as indicated by the meter. The result is expressed in mol/kg (dry wt).	Annex B (Preliminary determination of the acid/base consumption) – CEN/TC 292 – WI 292046 – Characterization of waste – Leaching behaviour tests – Acid and Base neutralization capacity test	1.0 mol/kg	Not Accredited
DETS 074	Low Level PAH by HPLC Fluorescence	PAH is extracted from one litre of filtered water sample by solid phase extraction. PAH is eluted from the SPE column with DCM evaporated to dryness under nitrogen and redissolved in acetonitrile. Analysis of samples is carried out by HPLC fluorescence.	EPA Method 550 The Analyst 2001, 126:1336-1331 Phenomonex Strata X Application Note for PAH by SPE	0.01ug/L each 5.0 ug/L Total	Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 1001	Sample Pre- Treatment and Preparation of Solids	Solid samples are classified and identified. Samples requiring analysis for unstable or volatile determinands are analysed as received. Samples requiring analysis for stable and non-volatile determinands are dried at <30°C or 50°C, depending on requirements, for a minimum of 16hrs (overnight). Dried samples are crushed in a jaw crusher, if necessary, and then ground using a mechanical mixer mill and sieved through a 250µm sieve to ensure they are homogenous.	BS1377:1990 – Soils for Civil Engineering Purposes The preparation and pre-treatment of potentially contaminated soils prior to chemical analysis – MEWAM – 2006 – Environment Agency (Updated procedure under preparation)	n/a	Not Accredited
DETSC 1002	Description of Soil Sample Type	This method outlines the procedure used to describe soil samples with respect to basic type, predominant colour and inclusions. The procedure is carried out during the sample preparation stage.	BS 5930:Section 6:1999	n/a	Not Accredited
DETSC 1003	Stone and Glass / Metal / Plastic Content of Soil	This method outlines the procedure used to determine the Stone and Glass/Metal/Plastic content of soil samples. The procedure is carried out during the sample preparation stage.	BS 3882:2007 BS 1377:1990	0.1%	Not Accredited
DETSC 1004	Moisture Content/Loss on Drying of Soil	Loss on drying is determined by loss of mass on drying in an oven set at 28°C or 50°C. Moisture content is determined by loss of mass on drying in an oven set at 105°C. The procedure is carried out during the sample preparation stage.	Practical Environmental Analysis. Radojevic & Bashkin. RSC 1999 BS 1377: Part 2:1990 DETS drying time study	0.1%	Not Accredited
DETSC 1101	Asbestos - Bulk Analysis	Samples are examined visually for the presence of asbestos containing materials or asbestos fibres. Suspect fibres are removed from the sample and examined using polarised light microscopy to determine whether they are asbestos fibres. If no asbestos fibres are identified by the method after an adequate length of examination time, and after at least two small pinch samples have been examined, then the sample may be reported as 'NAD' (no asbestos detected).	 HSG 248 Asbestos: The Analysis Guide for Sampling, Analysis and Clearance Procedures. 2005 McCrone W.C., Asbestos Identification (Second Edition), The McCrone Research Institute, 1987 LAB 30, Application of ISO/IEC17025 for Asbestos Sampling and Testing, UKAS, Edition 2, April 2008 	n/a	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 1102	Quantification of asbestos in soils, loose aggregates and ballast	The method of quantification is divided into three procedures: Gravimetric analysis, detailed gravimetric analysis and PCOM analysis. The analysis may be affected by the client's requirements as determined by contract review, and by the nature of the asbestos found in the sample, e.g. whether ACMs are present, and whether fibre bundles large enough to pick out using tweezers are have been found in the sample.	 HSG 248 Asbestos: The Analysis Guide for Sampling, Analysis and Clearance Procedures. 2005 HSG264 Asbestos: The survey guide. HSE Books, 2010. Davies, L. S.T., Wetherill, G. Z., McIntosh, C., McGonagle, C., Addison, J. 1996. Development and validation of an analytical method to determine the amount of asbestos in soils and loose aggregates. HSE Contract Research Report N0. 83/1996. HSE Books 	Gravimetric Analysis: 0.01% for 1kg sample Detailed Gravimetric Analysis: 0.001% for 50g sample PCOM Analysis: 0.001%	UKAS
DETSC 1103	Asbestos Water Absorption Test	This test involves a sample of the asbestos product being dried and weighed before being immersed in water for a period of time. The sample is then removed from the water and re-weighed. If the amount of water absorbed is <30% by weight, then the sample should be reported as 'Not Licensed'. If ≥30% water is absorbed then the sample should be reported as being 'Licensed', i.e. an asbestos material for which a licence is required to work on.	Work with Materials Containing Asbestos: Approved Code of Practice and Guidance. HSE Books, 2006.	n/a	UKAS
DETSC 2002	Organic matter content of soil	The procedure is based upon Walkley and Black's method. Organic matter in soil is oxidised with potassium dichromate in the presence of concentrated sulphuric acid. The excess dichromate is titrated with ferrous sulphate using diphenylamine as an external indicator. The organic matter content is calculated from the amount of dichromate used during the oxidation process based on an empirical relationship.	BS1377 : Part 3 : 1990 Method 3 BS1377 : Part 1 : 1990 BS 3882:2007	0.1%	UKAS MCERTS(Soils)

DETSC 2003	Loss On Ignition	Soil is ignited at 440C and the amount of sample lost on ignition is determined gravimetrically. Other specified temperatures may be used but are not accredited.	BS1377 : Part 3 : 1990 Method 4 BS1377 : Part 1 : 1990	0.01%	UKAS MCERTS(Soils)
Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2004	Sulphate Content of Soil and Water	The sulphate in the soil is dissolved in dilute hydrochloric acid, or in an aqueous extract having a water:soil ratio of 2:1 and the insoluble residue is removed by filtration. Waters are also filtered prior to analysis. The sulphate in the filtrate is precipitated as barium sulphate which is then filtered, ignited and weighed.	BS1377 : Part 3 : 1990 Method 5 BS1377 : Part 1 : 1990 BRE SD1: 2005 Concrete in Aggressive Ground	Acid Soluble: 0.01% Water Soluble 100mg/l Waters 10mg/l	UKAS MCERTS(Soils)
DETSC 2005	Carbonate content of soil by Rapid Titration	The carbonate present in the soil reacts with a known excess of hydrochloric acid liberating carbon dioxide. The acid remaining after the reaction is determined by titration against sodium hydroxide. The result is calculated in terms of the equivalent proportion of carbon dioxide.	BS 1377: Part 1: 1990. BS 1377: Part 3: 1990: Method 5	1%	UKAS
DETSC 2006	Water Soluble Chloride Content of Soil & Chloride Content of Water	The chloride in the soil is dissolved in water and the insoluble material is removed by filtration. Waters are filtered before analysis. The chloride is analysed by Mohr's method. The chloride in a neutral solution is titrated against standard silver nitrate using potassium chromate as an indicator. The colour change is from yellow to brick red.	BS1377 : Part 3 : 1990 Method 7.2 BS1377: Part 1: 1990	Soil: 0.01% Water: 10mg/l	UKAS MCERTS(Soils)
DETSC 2007	Acid Soluble Chloride Content of Soil and Concrete	The chloride in the sample is dissolved in nitric acid and the insoluble material is removed by filtration. The dissolved chloride is analysed by Volhard's method. The chloride in solution is precipitated with a known excess of standard silver nitrate. The excess silver nitrate is titrated against standard ammonium thiocyanate using ferric alum as an indicator. The colour change is white to red.	BS1377 : Part 3 : 1990 Method 7.3 BS1377: Part 1: 1990 BS 1881-124:1988	0.01%	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2008	pH Value of Soil and Water	The pH value of a soil suspension in water or a groundwater sample is determined electrometrically using a glass electrode.	BS1377: Part 3: 1990 – Soils for Civil Engineering Purposes – Chemical and Electrochemical Methods	n/a	UKAS (Soils + Waters) MCERTS (Soils + Waters-Trade Effluent only)
DETSC 2009	Electrical Conductivity of Soil & Water	The electrical conductance of a soil suspension in water or of a water sample is determined by voltammetry using a conductivity meter. In some cases, the soil may need to be extracted with an aqueous solution of an inorganic salt e.g. the conductivity of topsoil is determined by preparing a suspension of the soil in saturated calcium sulphate.	Standard Methods for the Examination of water and Wastewater Part 2510B 21st Edition 2005 APHA, AWWA, WEF BS3882:2007 Specification for Topsoil	1uS/cm	UKAS
DETSC 2019	Loose Packed Dry Soil Density	Dried, ground soil is transferred to a dry, tared measuring cylinder and the volume recorded. The cylinder and its contents are then weighed and the density of the soil calculated.	BS3882:2007 Specification for Topsoil	n/a	Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2024	Sulphide in Soil and Water by Iodometry	Hydrogen sulphide is liberated by acidification of the sample with hydrochloric acid in a steam distillation unit. The hydrogen sulphide produced is carried over with the steam and is absorbed in alkaline zinc acetate. The zinc sulphide produced reacts with iodine formed when iodate- iodide is acidified and the excess iodine titrated with standard thiosulphate.	In House Method based on: Environment Agency The determination of easily liberated sulphide in soils and similar matrices (2010) - Blue Book 228 Method D - The determination of easily liberated sulphide in as received or air-dried samples following acid steam distillation with iodometric titration. Environment Agency The determination of sulphide in waters and associated materials (2007) Draft Method D - The determination of easily liberated sulphide in as received or air-dried samples following phosphoric acid steam distillation with iodometric titration.	Soils: 10mg/kg Waters: 250ug/l	Soils: UKAS MCERTS(Soils) Waters: Not Accredited
DETSC 2030	Alkalinity in Water	Alkalinity of a water sample is determined by indicator end point titration with a strong acid from sample pH to pH8.3 (where applicable) and then to pH4.5. From the titres obtained the total alkalinity and concentrations and types of alkalinity present can be calculated.	SCA Method ISBN 0 11 751601 5 The Determination of Alkalinity and Acidity in Water 1981 Instruction Manual for Skalar SP50 Robotic Analyser	20mg/l as CaCO3	UKAS MCERTS(Waters) Trade Effluent only
DETSC 2031	5 Day Biochemical Oxygen Demand	The sample, either diluted or undiluted, is placed in a BOD bottle and the initial dissolved oxygen content of the sample is measured using a dissolved oxygen meter. The bottle is placed in an incubator at 20°C in the dark for 5 days. After this time the bottle is removed and the residual dissolved oxygen content of the sample is measured. The BOD of the sample is calculated from the reduction in the concentration of dissolved oxygen over 5 days.	SCA Method ISBN 0 117522120 5 Day Biochemical Oxygen Demand (BOD5) Second Edition 1988	1 mg/l	UKAS MCERTS(Waters)- Trade Effluent only

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2032	Chemical Oxygen Demand	Oxidisable substances react with sulphuric acid – potassium dichromate solution in the presence of silver sulphate as a catalyst. Chloride is masked by mercury sulphate. The reduction in the yellow colouration of Cr6+ is evaluated using a spectrophotometer for the low range tubes (LCK 314) whilst the green colouration of Cr3+ is evaluated for the medium and high range tubes (LCK 014 and LCK 114).	Environment Agency The determination of chemical oxygen demand in waters and effluents (2007) Methods for the Examination of Waters and Associated Materials	10 mg/l	UKAS MCERTS(Waters)- Trade Effluent only
DETSC 2033	Total and Dissolved Organic Carbon in Water	The term TOC (Total Organic Carbon) is used to describe the total content of organically bound carbon in dissolved and undissolved compounds. The TOC content is expressed in mg/l. If DOC (Dissolved Organic Carbon) is required, samples are filtered through a 0.45µm filter paper prior to analysis. Inorganic carbon is expelled by acidification of the sample. TOC is then determined by digestion of the sample with sulphuric acid and peroxodisulphate. Carbon containing compounds are transformed into carbon dioxide. The carbon dioxide evolves and reacts with an indicator solution. The colour change is measured using a spectrophotometer.	Hach-Lange Technical Instructions: LCK 385, LCK 386, LCK 387	2 mg/l	UKAS
DETSC 2034	Suspended and Settleable Solids in Water	Suspended matter is removed from a measured volume of sample by filtration under reduced pressure through a pre- treated, pre-weighed glass fibre filter paper. The paper is washed with deionised water to remove dissolved salts and the total suspended matter is determined gravimetrically after drying at $105 \pm 5^{\circ}$ C Settleable solids are determined by subtracting the solids left in suspension after settlement for 1 hour (or other agreed time) from the total suspended matter in the sample.	SCA Method ISBN 011 751957 X Suspended, Settleable and Total Dissolved Solids in Waters and Effluents 1980	5 mg/l	Suspended Solids: UKAS MCERTS(Waters)- Trade Effluent only Settleable Solids: Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2035	Total Dissolved Solids in Water	Water samples are pre-filtered to remove any suspended solids and evaporated in an oven at 180°C. The amount of residual dissolved solids is determined gravimetrically. An estimate of the total dissolved solids can be obtained by measuring the conductivity of the sample. This method is not accredited.	SCA Method ISBN 011 751957 X Suspended, Settleable and Total Dissolved Solids in Waters and Effluents 1980 BS1377: Part 3 : 1990 Section 8	5 mg/l	UKAS
DETSC 2047	Formaldehyde in Water	 Formaldehyde in soil is extracted in water, with a water to soil ratio of 10:1. The insoluble residue is removed by filtration prior to analysis. Waters are filtered prior to analysis to remove any particulates in suspension. Formaldehyde in the extract or water sample reacts with chromatropic acid-sulphuric acid solution to form a purple coloured complex. The absorbance of the coloured solution is read at 580nm using a suitable visible spectrophotometer. 	Formaldehyde by visible absorption spectrophotometry – Method 3500, Issue 2 – NIOSH Manual of Analytical Methods, Fourth edition, August 1994	Soil: 0.2mg/kg Water: 20µg/l	Not Accredited
DETSC 2048	Dissolved Oxygen Content of Water	The dissolved oxygen content of the sample is measured using a dissolved oxygen meter either electrochemically or by fluorescence, or by the titrimetric method developed by Winkler.	SCA Method ISBN 0.11 751442X Dissolved Oxygen in Natural and Waste Waters 1979	0.1 mg/l	Not Accredited
DETSC 2055	Anions in Water and Aqueous Soil Extracts by Ion Chromatography	Liquid samples and aqueous soil extracts are filtered through a 0.22µm syringe filter prior to analysis. The filtered samples are injected into an Ion Chromatograph. The anions of interest are separated on the basis of their affinity for the active sites of the column packing material. The separated anions are converted into their highly conductive acid forms and measured by conductivity. The anions are identified on the basis of retention time as compared to standards and quantisation is by measurement of peak area.	Standard Methods for the Examination of Water and Wastewater Section 4110 21st Edition 2005 APHA, AWWA, WEF	Soil: 1.0 mg/kg Water: 0.1 mg/L	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2076	Sulphate and Magnesium Content of 2:1 Aqueous Extract of Soil by ICP- OES	The sulphate and magnesium in the soil are extracted in an aqueous extract having water: soil ratio of 2:1 and the insoluble material is removed by filtration. The concentrations of sulphate and magnesium in the filtrate are determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The wavelengths used for identification and quantification are 181.972nm for sulphate and 285.213nm for magnesium.	BS1377 : Part 3: 1990 Method 5 BS1377 : Part 1: 1990 TRL 447 Sulphate Specification for Structural Backfills 2005 BRE SD1:2005 Concrete in Aggressive Ground 2005	10mg/L	Sulphate: UKAS MCERTS(Soils) Magnesium: Not Accredited
DETSC 2084	Total Organic Carbon by PrimacATC Analyser	Soil samples are treated with phosphoric acid to expel any inorganic carbonates. The samples are then heated at high temperature in a continuous flow of air so that any organic carbon is oxidised to carbon dioxide. The gas is then allowed to cool and analysed by an infra-red detector.	PrimacsATC Analyser – User Manual, Skalar	0.47%	MCERTS(Soils)
DETSC 2085	Total and Dissolved Organic Carbon in Water	Direct TOC Analysis The sample is acidified, stirred and purged to remove the IC before the sample is injected and handled as in the TC Analysis. The sample is filtered before acidification for DOC. TC Analysis The sample is injected by an automated septum less rotary port into a high temperature reactor. In the reactor, at a temperature of 750 - 950°C all organic and inorganic carbon is oxidized to the gaseous carbon dioxide (CO2). The catalyst that is present in the reactor catalysis the oxidation to completion. A flow of air transports these oxidation products to the detectors. The oxygen required for reaction is taken from the airflow. The products are led into the non-dispersive infrared detector where the carbon dioxide is determined. The carbon dioxide is measured at a wavelength of 4.2 μm by NDIR detection.	Standard Methods for the Examination of Water and Wastewater Section 5310 B 21st Edition 2005 APHA, AWWA, WEF HMSO Methods for the Examination of Waters and Associated Materials – The Instrumental Determination of Total Organic Carbon and Related Determinands 1995	lmg/l as C	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2119	Exchangeable Ammonia in Soil	An intense blue-green complex, related to indophenol blue, is formed by the reaction of ammonia with hypochlorite and sodium salicylate, with sodium nitroprusside acting as a catalyst. The complex is measured at 655nm and is related to the ammonia concentration by means of a calibration curve. Sodium citrate is added to overcome interfering ions.	MAFF/ADAS Reference Book 427 – the Analysis of Agricultural Materials – Method 53, Ammonium, Nitrate and Nitrite-Nitrogen, Potassium Chloride Extractable	0.5mg/kg	UKAS MCERTS(Soils)
DETSC 2120	Ammonia in Water by Spectrophotometr y	An intense blue-green complex, related to indophenol blue, is formed by the reaction of ammonia with hypochlorite and sodium salicylate, with sodium nitroprusside acting as a catalyst. The complex is measured at 655nm and is related to the ammonia concentration by means of a calibration curve. Sodium citrate is added to overcome interfering ions.	Environment Agency Ammonia in Waters 1981 ISBN 0117516139 Methods for the Examination of Waters and Associated Materials	20µg/l	UKAS
DETSC 2121	Total Kjeldahl Nitrogen Content of Soils and Waters	The sample is digested with sulphuric acid and a mixture of catalysts to convert organic nitrogen to ammonia. The sample is then distilled under alkaline conditions, and the distilled ammonia is absorbed in sulphuric acid. The ammonia content of the distillate is then determined colorimetrically either using the UV/vis spectrophotometer or the Konelab 60i. Ammonia reacts with hypochlorite ions generated by the alkaline hydrolysis of sodium dichloroisocyanurate to form monochloramine. Monochloramine reacts with salicylate ions in the presence of sodium nitroprusside at around pH 12.6 to form a blue compound. The absorbance of this compound is measured spectrophotometrically at wavelength 660nm	The Analysis of Agricultural Materials – MAFF/ADAS Reference Book 427 – HMSO BS 3882: 2007 Specification for topsoil Standard Methods for the Examination of Water and Wastewater Part 4500-N. 21st Edition 2005 APHA, WWA, WEF	Soil: 0.01% Water: 2mg/l	Not Accredited
DETSC 2123	Water Soluble Boron in Soil & Boron in Water	Boron in soil is extracted in boiling saline water. Waters are filtered prior to analysis to remove any particulates in suspension. The water soluble boron in the extract or filtrate reacts with azomethine–H to produce a yellow coloured complex. The resulting colour absorbance is measured at 420nm using a suitable visible spectrophotometer.	SecondSite Property (now National Grid Property Holdings) - Guidance for assessing and managing potential contamination on former gasworks and associated sites (Part I) (Version 3) Method 17.12 The analysis of Agricultural materials MAFF/ADAS – reference book 427	Soil: 0.2mg/kg Water: 100ug/L	UKAS MCERTS(Soils)

)

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2130	Cyanides & Monohydric Phenols by Skalar	 Water samples are filtered through a 0.45µm syringe filter and solid samples are extracted with 1M caustic soda prior to analysis on the automated flow analyser. The method determines total cyanide, easily liberated cyanide, complex cyanide, thiocyanate and monohydric phenols 	Skalar methods: 1295-001 w/r+P7 1295-002 w/r+P7 293-902 w/r+P7 497-001	Soils mg/kg: Total & Free CN=0.1, Thio=0.6, Phenol=0.3 Waters ug/L: Total CN=40, Free CN=20, Thio=20, Phenol=100	UKAS MCERTS(Soils)
DETSC 2140	Sugar in Mixing Water for Cement	Waters are filtered prior to analysis to remove any particulates in suspension. The sugar in the filtrate reacts with phenol and sulphuric acid to produce a yellow-orange coloured complex. The resulting colour absorbance is measured at 490nm using a suitable visible spectrophotometer.	Colorimetric Method for Determination of Sugars and Related Substances MICHEL DUBOIS, K. A. GILLES, J. K. HAMILTON, P. A. REBERS, and FRED SMITH - Division of Biochemistry, University of Minnesota, St. Paul, Minnesota.	10mg/l	Not Accredited
DETSC 2201	Nitrite in Waters and Leachates by Konelab 60i	Nitrite is determined colorimetrically using the Konelab60i autoanalyser. The nitrite colour reaction occurs at pH 2.0 to 2.5 by coupling diazotized Sulphanilamide with N-1- naphthyl-ethylenediamine. The absorbance of this compound is measured spectrophotometrically at 520nm.	Standard Methods for the Examination of Water and Wastewater Part 4500- NO2 B – 21st Edition 2005 APHA, AWWA, WEF Aquakem Method Nitrite in Waters Iss No 2 Methods for the Examination of Water and Associated Materials Oxidised Nitrogen in Waters 1981.	0.04mg/l (as N)	UKAS

	EPA Method 354.1 Nitrite, spectrophotometric (Approved at 40 CFR Part 136, not approved at Part 141)	

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2202	Total Oxidised Nitrogen in Waters and Leachates by Konelab 60i	Nitrate is reduced to nitrite by hydrazine under alkaline conditions. The total nitrite ions are then reacted with sulphanilamide and N-1-naphthylethylenediamine dihydrochloride under acidic conditions to form a reddish purple azo-dye. The absorbance of this compound is measured spectrophotometrically at 540 nm using the Konelab 60i autoanalyser.	 Standard Methods for the Examination of Water and Wastewater Part 4500- NO2 B and Part 4500-NO3 H – 21st Edition 2005 APHA, AWWA, WEF Aquakem Method Total Oxidised Nitrogen. Methods for the Examination of Water and Associated Materials Oxidised Nitrogen in Waters 1981. EPA Method 353.1 Nitrate, Nitrite Colorimetric Automated Hydrazine Reduction (Approved at 40 CFR Part 136, Not approved at Part 141) 	0.7mg/l (as N)	UKAS
DETSC 2203	Hexavalent Chromium in Waters and Leachates by Konelab 60i	Hexavalent Chromium is determined colorimetrically using the Konelab 60i autoanalyser. Hexavalent chromium reacts with diphenylcarbizide in acid solution and produces a red-violet colour. The absorbance of this compound is measured spectrophotometrically at 540nm.	Standard Methods for the Examination of Water and Wastewater Part 3500-Cr – 21st Edition 2005 APHA, AWWA, WEF USEPA 7196-A Aquakem Method. Hexavalent Chromium	10µg/1	UKAS
DETSC 2204	Hexavalent Chromium in Soil by Konelab 60i	Hexavalent Chromium is determined colorimetrically using the Konelab 60i autoanalyser. Hexavalent chromium reacts with diphenylcarbizide in acid solution and produces a red-violet colour. The absorbance of this compound is measured spectrophotometrically at 540nm.	Aquakem Method. Hexavalent Chromium	lmg/kg	Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2205	Reactive & Total Phosphorus in Waters and Leachates by Konelab 60i	Phosphate is determined colorimetrically using the Konelab60i autoanalyser. The orthophosphate ion reacts with ammonium molybdate and antimony potassium tartrate under acidic conditions to form a 12- molybdophosphoric acid complex. The complex is then reduced with ascorbic acid to form a blue heteropoly compound. The absorbance of this compound is measured spectrophotometrically at wavelength 880nm.	Standard Methods for the Examination of Water and Wastewater Part 4500-P E– 21st Edition 2005 APHA, AWWA, WEF Aquakem Method. Phosphate in Waters Issue 2	0.01mg/l	Reactive Phosphorus: UKAS MCERTS (Waters- Trade Effluent only) Total Phosphorus: Not Accredited
DETSC 2206	High Level Ammonia in Waters and Leachates by Konelab 60i	Ammonia is determined colorimetrically using the Konelab60i autoanalyser. Ammonia reacts with hypochlorite ions generated by the alkaline hydrolysis of sodium dichloroisocyanurate to form monochloramine. Monochloramine reacts with salicylate ions in the presence of sodium nitroprusside at around pH 12.6 to form a blue compound. The absorbance of this compound is measured spectrophotometrically at wavelength 660nm.	Methods for the Examination of Waters and Associated Materials Ammonia in Waters 1981 ISBN 0117516139. Aquakem Method. Ammonia in Waters Issue 2	0.8mg/l	UKAS
DETSC 2207	Low Level Ammonia in Waters and Leachates by Konelab 60i	Ammonia is determined colorimetrically using the Konelab60i autoanalyser. Ammonia reacts with hypochlorite ions generated by the alkaline hydrolysis of sodium dichloroisocyanurate to form monochloramine. Monochloramine reacts with salicylate ions in the presence of sodium nitroprusside at around pH 12.6 to form a blue compound. The absorbance of this compound is measured spectrophotometrically at wavelength 660nm.	Methods for the Examination of Waters and Associated Materials Ammonia in Waters 1981 ISBN 0117516139. Aquakem Method. Ammonia in Waters Issue 2	0.015mg/l	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2208	Sulphide in Waters and Leachates by Konelab 60i	Sulphide is determined colorimetrically using the Konelab60i autoanalyser. Potassium Dichromate converts N-N-Diethyl-p-phenylenediamine to the free radical which reacts rapidly with sulphide to produce the coloured 'DPD Blue' or 'Ethylene Blue'. The absorbance can then be measured at wavelength 660nm.	The determination of sulphide in waters and associated materials (2007) - SCA - Draft (March 2007) Aquakem Method. Sulphide SP001 Issue 2 Standard Methods for the Examination of Water and Wastewater, 21st Edition 2005, Part 4500. ISBN0-87553-223-3	10µg/l	UKAS
DETSC 2210	Ferrous Iron in Waters and Leachates by Konelab 60i	Three molecules of phenanthroline chelate with each atom of ferrous iron to form an orange/red complex. The intensity of the coloured solution is stable between pH3 to pH9. Rapid colour development occurs between pH2.9 and pH3.5 in the presence of excess phenanthroline. The resulting colour absorbance is measured at 510nm	Aquakem Method Ferrous Iron FIR001 Issue 2	0.1mg/l	Not Accredited
DETSC 2211	Silicate in Waters and Leachates by Konelab 60i	Reactive forms of silicon in acid solution, below pH2, react with ammonium molybdate ions to form a yellow silicomolybdate. Ascorbic acid reduces the yellow silicomolybdate to produce a blue silicomolybdate complex. Oxalic acid is added to destroy any molybdophosphoric acid formed.	ASTM D7126 - 10 Standard Test Method for On-Line Colorimetric Measurement of Silica Aquakem Method Silica SIL Issue 2	0.1mg/l	Not Accredited
DETSC 2301	Metals in Soil by ICP-OES As, Ba, Be, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se, V, Zn	Metals in soil are extracted using aqua regia and their concentrations are determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Any metals not listed can be determined but are not accredited under UKAS or MCERTS for soils.	Standard Methods for the Examination of Water and Wastewater Part 3120 B – 21st Edition 2005, AWWA, WEF	mg/kg: As, Be Cu, Ni =0.2, Ba=1.5, Cd=0.1, Cr=0.15, Co=0.7, Mn=20, Mo=0.4, Pb=0.3, Fe=1200, Se=0.5, V=0.8, Zn=1.0	UKAS (all listed) MCERTS (All soils listed except Fe)

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2302	Metals in Waters by ICP-OES Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Zn	Concentrations of metals in water are determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Any metals not listed can be determined but are not accredited under UKAS or MCERTS for waters	Standard Methods for the Examination of Water and Wastewater Part 3120 B – 21st Edition 2005 APHA, AWWA, WEF	μg/l: Al=6.5, As= 7.1, Ca=100, Cd=0.3, Cr=0.75, Cu=0.75, Fe=70, K=20, Mg=5, Na=12, Ni=2.7, Pb=4, Se=11.3, Zn=3.8	Dissolved: UKAS (all listed) MCERTS(Waters)- Trade Effluent only (Al, Cd, Cr, Cu, Ni, Pb, Zn) Total: Not Accredited
DETSC 2303	Total Hardness (By Calculation)	The concentrations of calcium and magnesium are determined using the appropriate methodologies. The hardness is a measure of the sum of the calcium and magnesium concentration expressed as calcium carbonate.	Standard Methods for the Examination of Water and Wastewater Part 3120 B – 21st Edition 2005 APHA, AWWA, WEF	n/a	UKAS
DETSC 2304	Zinc Equivalent in Soil (By Calculation)	The concentrations of copper, nickel and zinc concentrations are determined using the appropriate methodologies. The zinc equivalent is a measure of the combined toxicity of the three metals, relative to the toxicity of zinc.	n/a	n/a	Not Accredited
DETSC 2306	Metals in Waters by ICP-MS Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, V, Zn	Concentrations of metals in water are determined by Inductively Coupled Plasma Mass Spectroscopy (ICP- MS). Any metals not listed can be determined but are not accredited under UKAS.	Standard Methods for the Examination of Water and Wastewater Part 3125 B – 21st Edition 2005 APHA, AWWA, WEF	μg/l: Ag=0.13, Al=10.0, As=0.16, Ba=0.26, Ca=90, Cd=0.03, Co=0.16, Cr=0.25, Cu=0.40, Fe=5.50, Hg=0.01, K=80, Mg=20, Mn=0.22, Mo=1.1, Na=70, Ni=0.50, P=18.0, Pb=0.09, Sb=0.17, Se=0.25, Sn=0.40, V=0.60, Zn=1.3	Dissolved: UKAS (all listed) Total: Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2320	Total Sulphur in Soil by ICP	Sulphur compounds in soil are extracted using aqua regia and the insoluble residue is removed by filtration. The concentration of sulphur in the filtrate is determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Loss of sulphur as H2S is prevented by oxidation of the sulphur compounds to sulphate by the aqua regia.	TRL 447 Sulphate Specification for Structural Backfills 2005 BRE SD1 Concrete in Aggressive Ground 2005	0.01%	UKAS
DETSC 2321	Total Sulphate content of Soil by ICP-OES	The sulphate in the soil is extracted in dilute hydrochloric acid and the insoluble residue is removed by filtration. The filtrate is made up to volume and the concentration of sulphate in the filtrate is determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP- OES).	BS1377 : Part 3: 1990 Method 5 BS1377 : Part 1 : 1990	0.01%	UKAS MCERTS(Soils)
DETSC 2322	Total Potential Sulfate and Total Oxidisable Sulphur (By Calculation)	 Sulphur compounds in soil are extracted using aqua regia and the insoluble residue is removed by filtration. The concentration of sulphur in the filtrate is determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Loss of sulphur as H2S is prevented by oxidation of the sulphur compounds to sulphate by the aqua regia. The wavelength used for identification and quantification of sulphate is 181.972nm. The sulphate in the soil is extracted in dilute hydrochloric acid and the insoluble residue is removed by filtration. The filtrate is made up to volume and the concentration of sulphate in the filtrate is determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The wavelength used for identification and quantification of sulphate is 181.972nm. The two results obtained from the above tests may then be combined to calculate the Total Potential Sulphate and Total Oxidisable Sulphur content 	BS1377 : Part 3: 1990 Method 5 BS1377 : Part 1 : 1990	0.01%	Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2324	Mercury in Waters by Atomic Fluorescence Spectroscopy	Waters and aqueous samples are preserved by fixing with concentrated nitric acid. Treatment with tin (II) chloride reduces mercury (II) to mercury (0) vapour which is detected using atomic fluorescence spectrometry.	Standard Methods for the Examination of Water and Wastewater Part 3112 B – 21st Edition 2005 APHA, AWWA, WEF PSA Method – Millennium Merlin Method for Total Mercury in Drinking, Surface, Ground, Industrial and Domestic Wastewaters and Saline Waters	0.05µg/l	UKAS
DETSC 2325	Mercury in Soil Atomic Fluorescence Spectroscopy	The mercury is extracted from soil in aqua regia with gentle refluxing. The extract is filtered to remove particulates and diluted to volume. Treatment with tin (II) chloride reduces mercury (II) to mercury (0) vapour which is detected using atomic fluorescence spectrometry.	PSA Method – Millennium Merlin Method for Mercury in Sludge, Soils and Sediments	0.05 mg/kg	UKAS MCERTS(Soils)
DETSC 2332	Inorganic and Methyl Mercury Speciation	Soils are air-dried and crushed before being subjected to a two-stage microwave extraction procedure for Inorganic (Hg(II)) and Methyl (MeHg) mercury. Waters and aqueous samples are filtered to remove particulates. An aliquot is separated via HPLC before treatment with bromate-bromide and tin (II) chloride to generate mercury and the mercury is determined by atomic fluorescence spectroscopy.	USEPA Method 3200 – Mercury Species Fractionation and Quantification by Microwave Assisted Extraction. PSA Application Note 053 – Mercury Speciation Using The Millenium Merlin Speciation System	Soil: 100μg/kg Water: 1μg/l	Not Accredited
DETSC 2333	Elemental Mercury Speciation	Soils, waters and aqueous samples are tested on an as- received bases. A known quantity of sample is extracted using argon and the released elemental mercury is trapped. The trapped mercury is released upon heating in a scarifier module and determined by atomic fluorescence spectroscopy.		Soil: 0.6μg/kg Water: 1μg/l	Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 2400	Unified Barge Bioaccessible Metals in Soils	The Unified BARGE Method (UBM) is a an in vitro method for simulating the human digestive system. Synthetic digestive fluids are used to simulate the fluids present in the body. Both inorganic solutions (Containing inorganic salts such as KCl, NaCletc), and organic solutions (Containing organic compounds such as Urea, Glucose etc) are mixed with enzymes to produce 4 Synthetic digestive fluids saliva (S), Gastric fluid (G), duodenal fluid (D) and bile (B). These solutions are then used to mimic the effect of a sample passing through a human gastro intestinal tract by shaking portions of the sample at 37 ^o C, human body temperature (17.4).	EPA 9200.2-86 April 2012- Standard Operating Procedure for an In Vitro Bioaccessibility Assay for Lead in Soil BGS Chemical& Biological Hazards Programme Open Report OR/07/027 - Inter-laboratory Trial of a Unified Bioaccessibility Procedure	V = 1.0 mg/kg $Cr = 5.0 mg/kg$ $Co = 1.0 mg/kg$ $Ni = 5.0 mg/kg$ $As = 0.5 mg/kg$ $Se = 0.5 mg/kg$ $Cd = 0.5 mg/kg$ $Pb = 1.0 mg/kg$	Not Accredited
DETSC 3001	Solvent Extractable Matter in Soil	Soil samples are extracted with a water-immiscible solvent and filtered to remove the water. The solvent is evaporated and the amount of extractable matter in the sample is determined gravimetrically.	In-house method based on:- Problems Arising from the Redevelopment of Gas Works and Similar Sites - AERE Harwell Laboratory 1981. Environmental Agency The Determination of Material Extractable by Carbon Tetrachloride and of Certain Hydrocarbon Oil and Grease Components in sewage Sludge - 1978	40mg/kg	Toluene & Cyclohexane: UKAS Other Solvents: Not Accredited
DETSC 3002	Oil & Grease/Solvent Extractable Matter in Waters	A known volume of sample is acidified to pH<2 and extracted three times with an organic solvent, such as n- Hexane, in a separating funnel. The solvent is removed by evaporation and the amount of extractable matter in the sample is determined gravimetrically.	 APHA 21st Edition, 2005 – Method 5520 B. Oil & Grease - Partition Gravimetric Method USEPA Method 1664, Revision A: n- Hexane Extractable Material (HEM: Oil & Grease) and Silica Treated N- Hexane Extractable Material (SGT- HEM; Non Polar Material) by Extraction and Gravimetry. 	1mg/l for 500ml sample	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 3049	Elemental Sulphur in Soils and Waters by HPLC	Soils are extracted in dichloromethane (DCM) by sonication. The elemental sulphur concentration is determined by high performance liquid chromatography (HPLC) with UV detection using a C ₁₈ (e.g. 250mm x 4.6mm) column and a mobile phase composed of 95% methanol and 5% water. Waters and aqueous extracts of soils are extracted using DCM in a separating funnel, filtered, and the concentration determined using HPLC.	National Grid Property Holdings Limited, Methods for the Collection and Analysis of Samples from National Grid Sites, Version 1, September 2006. Section 3.12 Soil Analysis: Elemental Sulphur.	Soil: 0.75mg/kg Waters: 90ug/l	Soil: UKAS MCERTS(Soils) Water: UKAS
DETSC 3072	Aliphatic / Aromatic TPH by GC-FID	Aliphatic and aromatic petroleum hydrocarbons (C_{10} - C_{35}) are extracted from soil and water using n-Hexane. The fractions are separated by solid phase extraction using silica columns, whereby the aliphatic fraction is eluted first with n-Hexane and the aromatic portion is eluted second with dichloromethane. The total, aliphatic, and aromatic concentrations are determined by gas chromatography flame ionisation detection (GC-FID) using a capillary column and hydrogen as the carrier gas. The chromatographic data is further characterized by subdivision into approximate boiling point/carbon number ranges with respect to n-alkane retention time markers.	National Grid Property Holdings Limited, Methods for the Collection and Analysis of Samples from National Grid Sites, Version 1, September 2006. Section 3.12 Soil Analysis: Draft TNRCC Method 1006	Soil mg/kg: AL10-12 =1.5 AL12-16 =1.2 AL16-21 =1.5 AL21-35 =3.4 AR10-12 =0.9 AR12-16 =0.5 AR16-21 =0.6 AR21-35 =1.4 Water: lug/l	Soil: UKAS MCERTS(Soils) (C10-C35 only) Water: Not Accredited
DETSC 3301	PAH in Soil by GC-FID	Soils and associated materials are extracted in dichloromethane (DCM) using sonication. The PAH concentration is recorded both as "Total PAH" and as "Speciated PAH", specified in terms of the 16 US EPA "Priority Pollutant" Polycyclic Aromatic Hydrocarbons. Concentrations are determined by gas chromatography using a BPX 50 (30m; 0.25µm ID; 0.25µm film) capillary column (or equivalent).	In-house method based on US EPA Method 8100, Polynuclear Aromatic Hydrocarbons	0.5 mg/kg each 1.6 mg/kg Total PAH	UKAS (16 PAH's only)
DETSC 3302	Hexane / Acetone Extracted PAH in Soil by GC-FID	Soils are extracted into hexane: acetone by shaking. The PAH concentration is recorded both as "Total PAH" and as "Speciated PAH", specified in terms of the 16 US EPA "Priority Pollutant" Polycyclic Aromatic Hydrocarbons. Concentrations are determined by gas chromatography using a BPX 50 (30m; 0.25µm ID; 0.25µm film) capillary column (or equivalent).	In-house method based on US EPA Method 8100, Polynuclear Aromatic Hydrocarbons	0.1 mg/kg each 1.6 mg/kg Total PAH	Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 3303	Polyaromatic Hydrocarbons in Soils by GC-MS	The PAHs in the soil sample are extracted into hexane: acetone by shaking. The PAHs in the extract are separated by gas chromatography and identified by the mass selective detector. The concentration of each PAH is determined by referencing individual mass peak areas to the appropriate internal standard mass peak area. Quantification is carried out within the instrument software.	In-house method based on EPA Method 8270- US EPA Method 8270, Revision C, Semivolatile Organic Compounds by Gas Chromatography – Mass Spectrometry (GC/MS)	0.03 mg/kg each 0.10 mg/kg Total PAH	UKAS (All 16 PAH's) MCERTS (not Fluorene, Anthracene, Chrysene or Total)
DETSC 3304	Polyaromatic Hydrocarbons in Waters by GC-MS	The PAHs in the water sample are extracted into dichloromethane by shaking. The PAHs in the extract are separated by gas chromatography and identified by the mass selective detector. The concentration of each PAH is determined by referencing individual mass peak areas to the appropriate internal standard mass peak area. Quantification is carried out within the Instrument software.	In-house method based on EPA Method 8270- US EPA Method 8270, Revision 3, Semivolatile Organic Compounds by Gas Chromatography – Mass Spectrometry (GC/MS) In-house method based on EPA Method 3510C- EPA Method 3510C, Revision 3, Separatory Funnel Liquid- Liquid Extraction	10 ng/l each	UKAS (16 PAH's only)
DETSC 3311	Extractable Petroleum Hydrocarbons (EPH) in Soil, Ballast and Water	This method is designed to determine total concentrations of extractable petroleum hydrocarbons (EPH) in solid and aqueous matrices. This method uses a dichloromethane (DCM) extraction followed by quantification using gas chromatography/flame ionisation detection (GC-FID) analysis using a 1:1 mixture of diesel and mineral oil as calibration standards and n-alkane markers to establish the boiling point ranges. This method is used for the quantitative analysis of "Total EPH" (C10-C40) and as "Speciated EPH", specified in terms of the "diesel range" (C10-C24), and "mineral oil range" (C24-C40).	USEPA Method 3550C – Ultrasonic Extraction USEPA Method 8015B – Non- Halogenated Organics Using GC/FID	Soil: 10 mg/kg Ballast: 10mg/kg Water: 10µg/l	Soil: UKAS MCERTS(Soils) Water: UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 3312	Hexane Extractable Petroleum Hydrocarbons (HPH)	This method is designed to determine total concentrations of extractable petroleum hydrocarbons (EPH) in solid matrices. This method uses a hexane: acetone (9.4) extraction followed by quantification using gas chromatography/flame ionisation detection (GC-FID) analysis using a 1:1 mixture of diesel and mineral oil as calibration standards and n-alkane markers to establish the boiling point ranges. This method is used for the quantitative analysis of "Total EPH" (C10-C40) and as "Speciated EPH", specified in terms of the "diesel range" (C10- C24) and "mineral oil range" (C24-C40).	USEPA Method 8015B – Non- Halogenated Organics Using GC/FID	Soil: 5 mg/kg	Not Accredited
DETSC 3321	BTEX, MTBE & PRO in Soils by Headspace GC- FID	BTEX, MTBE and PRO in soils are determined via Headspace GC-FID. Individual aromatic compounds are quantified by external calibration against known standards. PRO range is banded using alkane markers to define retention time windows.	EPA Methods 5021 and 8015D	0.01 mg/kg	UKAS MCERTS(Soils) Not accredited for PRO range (C5-10)
DETSC 3322	BTEX, MTBE & PRO in Waters & Leachates by Headspace GC- FID	BTEX, MTBE and PRO in soils are determined via Headspace GC-FID. Individual aromatic compounds are quantified by external calibration against known standards. PRO range is banded using alkane markers to define retention time windows.	EPA Methods 5021 and 8015D	1 μg/l	UKAS
DETSC 3401	PCBs in Soils by GC-MS	An as-received soil sample is extracted in Hexane:Acetone (1:2) using sonication methodology. The sample is separated by gas chromatography and identified by mass selective detector. Quantification is carried out within the instrument software.	EPA Method 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography.	μg/kg PCB 28=1.25 PCB 52=1.12 PCB 101=1.32 PCB 118=1.43 PCB 153=2.08 PCB 138=1.35 PCB 180=1.42	UKAS MCERTS(Soils)

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 3402	Polychlorinated Biphenols in Waters by GC/MS	The water sample is extracted in DCM on a reciprocal shaker. The sample is separated by gas chromatography and identified by mass selective detector. Quantification is carried out within the GC-MS software using an internal standard.	EPA Method 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography.	ng/l PCB 28=208 PCB 52=161 PCB 101=211 PCB 118+123=513 PCB 153=163 PCB 138=107 PCB 180=132 PCB 105=133 PCB 105=133 PCB 114=253 PCB 126=399 PCB 156=253 PCB 157=119 PCB 167=248 PCB 169=181 PCB 189=271 PCB 77=202 PCB 81=186	UKAS
DETSC 3432	Volatile Organic Compounds in Waters by Headspace GC- MS	The method covers the range of volatile organic compounds with boiling points up to 220°C. Water samples are heated and agitated in a crimp cap vial. This drives the volatile components in to the headspace. An aliquot of the headspace is taken and injected in to a gas chromatograph with mass selective detection (GC- MS).The detector operates in full scan mode and is calibrated with standards containing known concentrations of the compounds of interest.	USEPA Method 8260B Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Revision 2, December 1996	1 ug/l except: DCM (27), 2,2-Dichloropropane (2), Bromochloromethane (4), Bromodichlorometha ne (4), m+p-Xylene (2), 1,3- Dichlorobenzene (2)	UKAS except: Trichlorofluoromet hane, Methylene Chloride, 1,1,1- Trichloroethane,

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 3433	Semi-Volatile Organic Compounds in Soils by GCMS	The SVOCs in the soil sample are extracted into DCM: Acetone by shaking. The SVOCs in the extract are separated by gas chromatography and identified by the mass selective detector. The concentration of each SVOC is determined by referencing individual mass peak areas to the appropriate internal standard mass peak area. Quantification is carried out within the instrument software.	In-house method based on EPA Method 8270- US EPA Method 8270, Revision 3, Semi volatile Organic Compounds by Gas Chromatography – Mass Spectrometry (GC/MS)	Individual SVOCs 0.1 mg/kg	UKAS
DETSC 5001	Ash Content of Coal	The ash content of the sample is determined gravimetrically. A known weight of the sample is placed in a prepared ash crucible and placed in a furnace. The furnace is heated to 750°C ±10°C where the temperature is maintained. Following combustion the crucible and sample are removed, cooled and reweighed.	ASTM D3174-11 BS 1016-104.4 1998 ISO 1171: 2010	0.1%	UKAS
DETSC 5002	Ash & LOI Content of Solid Biomass & Solid Recovered Fuels	The ash and LOI content of the sample is determined gravimetrically. A known weight of the sample is placed in a prepared ash crucible and placed in a furnace. The furnace is heated to 550° C $\pm 10^{\circ}$ C where the temperature is maintained. Following combustion the crucible and sample are removed, cooled and reweighed.	BS EN 14775:2009 BS EN 15403:2011	0.1%	UKAS
DETSC 5003	Volatile Matter Content of Solid Biomass, Solid Recovered Fuels and Coal	A known weight of the sample produced for volatile matter determination is placed in a suitable crucible fitted with a lid. The crucible and sample is weighed and heated in a furnace with a limited air through put at a temperature of 900°C ± 10 °C for 7 minutes. The sample and crucible are re-weighed and the volatile matter content determined by difference.	BSEN15148:2009 – Solid Biofuels Determination of the Content of Volatile Matter BS EN 15402:2011 - Solid Recovered Fuels - Determination of the Content of Volatile Matter	0.1%	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 5004	Total Moisture / Dry Solids Content of Solid Biomass & Solid Recovered Fuels & Coal	The sample produced for general analysis is placed into a suitable prepared and weighed tray and reweighed. The sample is dried at 105°C to constant weight and the total moisture / dry solids content is calculated from the reduction in weight.	BSEN 14774 Parts 1 & 2 2009 DD CEN/TS 15414 Parts 1 & 2: 2010	0.1%	UKAS
DETSC 5005	Analysis Moisture Content of Solid Biomass, Solid Recovered Fuels & Coal	The sample produced for total moisture determination in accordance with DETSC 5009 or DETSC 5010 is placed in a suitable pre-weighed tray and reweighed. The sample is then dried at $105^{\circ}C \pm 2^{\circ}C$ to constant weight and then weighed again. The analysis moisture content is calculated from the reduction in weight.	BS EN 14774-3 2009 BS EN 15414-3 2011 BS 1016-104.1 -1999 ISO 11722 – 1999	n/a	UKAS
DETSC 5007	Calorific Value of Solid Biomass, Solid Recovered Fuels & Coal	Calorific value of a material is determined in an Isoperbol calorimeter by burning it in pure oxygen in a combustion bomb. A known amount of sample is placed in a combustion bomb which is then pressurised to 30bar with oxygen. A calorimeter bucket is filled with a known amount of deionised water which is placed in the calorimeter and the bomb placed in the bucket. The system is allowed to equilibrate and the bomb fired by electrical connection. The difference in temperature of the water in the calorimeter bucket caused by the ignition of the material in the bomb is measured and the calorific value calculated	BS EN 14918: Solid biofuels – Determination of calorific value BS EN 15400: Solid recovered fuels - Determination of calorific value	1MJ/kg	UKAS
DETSC 5008	Calorific Value of Soil	A known amount of sample material is burnt in a combustion bomb that is immersed in water in a calorimeter and the difference in the water temperature before and after ignition measured. The calorific value of the sample material is calculated making any necessary corrections for heat generation not associated with the combusting sample. A gelatine capsule will be required to assist combustion which is also corrected for in the final calculations.	BS 1016-105 1992 ISO 19208 ASTM 5865	1MJ/kg	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 5009	Sample Preparation of Solid Biomass & Solid Recovered Fuels	If analysis is required on the original material (i.e. Bulk Density) a sub-sample will be taken after initial mixing after which the sample is then reduced by cutting/chopping oversized pieces of material. The material is then mixed and subdivided by manual means during which process representative samples are taken for analysis i.e. total moisture. The remainder of the sample is dried and then reduced to <1mm and again mixed and subdivided to produce the sample for laboratory analysis.	BS EN 14780:2011 BS EN 15413:2011	n/a	Not Accredited
DETSC 5010	Sample Preparation of Coal	If required the sample received is first mixed and a sample taken for bulk density or bulk density is carried out on the whole initial sample. The remaining sample or the whole sample used for bulk density is then reduced to <10mm preferably by jaw crushing. The material is then mixed and subdivided by mechanical or manual means during which process representative samples are taken for any analysis required at this stage i.e. total moisture, The remainder of the sample is again mixed and subdivided to produce the sample for laboratory analysis which may require drying prior to crushing to <212 microns. If there is excessive water content a pre- drying stage of the whole sample may have to be carried out before sample blending and subdivision commences.	BS ISO 13909-4: 2001	n/a	Not Accredited
DETSC 5011	Calculation of Fixed Carbon Content of Coal, SRF and Solid Biomass Fuels	The total moisture, analysis moisture, ash and volatile matter content are determined by approved methods. The values obtained are deducted from 100 and this gives the fixed carbon value of the fuel.	DD CENT/S 15296:2006 BS 1016.100:1994 BS ISO 17246:2005	0.1%	Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 5012	Determination of Biomass Content of SRF	Approximately 5g of the sample is dissolved in 150ml of 78% Sulphuric Acid for 16 hours ±2 hours after which 35ml of 30% Hydrogen Peroxide is added and the sample left for an additional 5 hours ±1 hour. At the end of this period 300ml of deionised water is added to the sample and the residue remaining filtered off using a glass fibre filter paper, washing the residue with an additional 300ml of deionised water. The filter paper and residue are placed in a pre-weighed crucible and dried at 1500C until completely dry. The filter paper is reweighed after drying and the non biomass residue determined. Corrections for carbonates content is made by determining the ash content of the original sample and the non biomass residue remaining. The result can also be expressed by percentage calorific value by performing a calorific valve on the solid captured on the filter paper.	BS EN 15440 Solid recovered fuels - Methods for the determination of biomass content	n/a	UKAS
DETSC 5013	Determination Of Carbon, Hydrogen, Nitrogen & Oxygen In Solid Biomass, Solid Recovered Fuels & Coal	A known mass of fuel is weighed into tin capsules which are dropped sequentially into the combustion reactor prior to the arrival of oxygen. The sample and tin capsule react with oxygen and combust at temperatures of 1700-1800 °C and the sample is broken down into its elemental components N2, CO2, and H2O. High performance copper wires absorb the excess oxygen not used for sample combustion. The gases flow through the gas chromatographic (GC) separation column which is kept at a constant temperature. As they pass through the GC column, the gases are separated and are detected sequentially by the thermal conductivity detector (TCD). The TCD generates a signal, which is proportional to the amount of element in the sample. The instrument software compares the elemental peak to a known standard material (after calibration) and generates a report for each element on a weight basis. The oxygen is calculated by deducting these quantities from 100 along with the moisture, ash, sulphur & chlorine contents determined by other methods.	BS EN 15104:2011 Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen - Instrumental methods BS EN 15407:2011 Solid recovered fuels - Methods for the determination of carbon (C), hydrogen (H) and nitrogen(N) content BS EN 15296:2011 Solid biofuels - Conversion of analytical results from one basis to another	Carbon 0.10% Nitrogen 0.30% Hydrogen 0.30% Oxygen 3.55%	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 5014	Metals in Coal, SRF and Biomass by ICP	Metals in coal, solid recovered fuel (SRF) and biomass samples are extracted by microwave using Hydrogen Peroxide (to oxidise and break down organic matter) and Aqua Regia (to dissolve the matrix and hold the metals in solution). Their concentrations are determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES).	BS EN 15410 - Solid recovered fuels - Methods for the determination of the content of major elements (Al, Ca, Fe, K, Mg, Na, P, Si, Ti) BS EN 15411 - Solid recovered fuels - Methods for the determination of the content of trace elements (As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mo, Mn, Ni, Pb, Sb, Se, Tl, V and Zn) BS EN 15290 - Solid biofuels - Determination of major elements - Al, Ca, Fe, Mg, P, K, Si, Na and Ti BS EN 15297 - Solid biofuels - Determination of minor elements - As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, V and Zn	 0.1 mg/kg: As, Be, Cd, Co, Mn, Ni, P, Pb, Sb, Se, Sn, Ti, V, Zn 0.2mg/kg: Cr, Cu, Tl 0.5mg/kg: Mo 1mg/kg: Al, Fe, K, Mg 5mg/kg: Ca 10mg/kg: Ag, Ba, Rh, Sr, Te 	UKAS: Al, As (SRF only), Ca, Cd, Co, Cr, Cu, K, Mg, Mn, Na (SRF only), Ni, P, Pb, Se, Sn, Tl, V, Zn All other metals not accredited
DETSC 5015	Mercury in Coal, SRF and Biomass by Atomic Fluorescence Spectroscopy	The mercury is extracted from coal, SRF and biomass in aqua regia with gentle refluxing. The extract is filtered to remove particulates and diluted to volume. Treatment of the resulting solution with tin (II) chloride reduces mercury (II) to mercury (0) vapour which is then quantitatively detected using atomic fluorescence spectrometry.	PSA Method – Millennium Merlin Method for Mercury in Sludge, Soils and Sediments.	0.055mg/kg	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 5016	Total Sulphur Content Of Coal, SRF And Biomass	 Sulphur compounds in SRF and biomass are extracted using aqua regia / hydrogen peroxide and the insoluble residue is removed by filtration. The concentration of sulphur in the filtrate is determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Loss of sulphur as H2S is prevented by oxidation of the sulphur compounds to sulphate by the aqua regia. The use of hydrogen peroxide enhances the oxidation properties of nitric acid especially in the digestion of organics. Sulphur compounds in coal are determined by ICP-OES from the aqueous washings of the combustion products after firing in a bomb calorimeter. 	TRL Report TRL447 (Updated) - Sulphate specification for structural backfills 2005	0.001mg/kg	UKAS
DETSC 5017	Sulphur, Chlorine, Fluorine & Bromine Content of Solid Biomass, Solid Recovered Fuels and Coal by IC	A known weight of fuel is burnt in a pressurised bomb in pure oxygen. After firing of the bomb, it is stood for a minimum of five minutes to allow the combustion products to settle then the oxygen is slowly released over a period of at least three minutes. The bomb is then taken apart and the bomb electrodes rinsed with deionised water into the inside of the bomb. These washings are then decanted into a 50ml volumetric flask. The inside of the bomb is rinsed with deionised water and the washings added to those in the volumetric flask. The contents of the volumetric flask are made up to volume with deionised water and stored for the analysis of sulphur, chloride, fluoride and bromide by ion chromatography.	Operating Instruction Manual No. 442M 6200 Parr Oxygen Bomb Calorimeter Operating Instruction Manual No. 205M 1108 Oxygen Combustion Bomb Operating Instruction Manual No. 454M 6510 Water Handling System	0.01% Chlorine 0.01% Fluorine 0.01% Bromine 0.04% Sulphur (Coal only)	UKAS

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 5018	XRF Analysis of Coal, Biomass, SRF and Cement	 When X-rays are targeted at a material they will cause electrons to be ejected from the component atoms (Ionisation). The ejection of electrons will cause the electronic structure of the component atoms to become unstable resulting in electrons from the higher energy outer orbitals "falling" into the inner orbitals to compensate. This causes a release of energy in the form of a photon equal to the energy difference between the two orbitals involved. Thus the material emits radiation which has energy characteristics of the atoms present. In energy dispersive X-ray fluorescence the fluorescent X-rays emitted are directed to a detector from which the data is processed by a multichannel analyser, producing a digital spectrum which is processed to obtain analytical data. The instrument analytical parameters are set up for the matrix type. A sample cell is prepared by placing a piece of prolene film over the outer cell and then inserting the inner cell. This gives a complete cell with a clear prolene base. A portion of the sample is placed into the cell and then analysed. 	Rigaku NEX CG EDXRF instruction manual	$\begin{array}{c} \textbf{Cement:}\\ 0.01\% \text{ BaO, } Cr_2O_3,\\ CuO, PbO, Rb_2O,\\ SrO, ZnO\\ 0.02\% Cl, V_2O_5\\ 0.05\% TiO_2\\ 0.1\% Mn_2O_3, P_2O_5,\\ SO_3\\ 0.5\% K_2O\\ 1\% Al_2O_3, CaO,\\ CdO, Co_2O_3, Fe_2O_3,\\ MgO, Na_2O, NiO,\\ SiO_2, Y_2O_3\\ \textbf{Fuel:}\\ 0.01\% Co, Cr, Cu, I,\\ Li, Mn, Ni, P, Pb, Sn,\\ Ti, V, Zn\\ 0.02\% Al, Ba, S, Si\\ 0.1\% Mg\\ 0.2\% Ca\\ 0.5\% As, Cd, Hg,\\ Mo, Na, Sb, Se, Th,\\ Tl\\ 1\% Ag\\ \end{array}$	UKAS Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Sb, Si, Sn, Tl, Ti, V, Zn Al2O3, BaO, CaO, Cl, Cr2O3, CuO, Fe2O3, K2O, MgO, Mn2O3, Na2O, P2O5, PbO, Rb2O, SiO2, SO3, SrO, TiO2, V2O5, ZnO All other testing not accredited
DETSC 5019	Determination of Biodegradable Municipal Waste Content (Compositional Analysis)	The method is based on handpicking the BMW fraction from the municipal waste sample, and then weighing the amount of BMW sorted and expressing this as a percentage on a wet weight basis of the weight of the whole municipal waste sample.	ENVIRONMENT AGENCY: Guidance on monitoring of MBT and other treatment processes for the landfill allowances schemes (LATS and LAS) for England and Wales	n/a	Not Accredited
DETSC 5020	Determination of Bulk Density in Solid Biomass and Solid Recovered Fuels	The test portion is filled into a standard container of a given size and shape and weighed afterwards. Bulk density is calculated from the net weight per standard volume and reported for the moisture content.	BS EN 15103:2009 Solid Biofuels- Determination of bulk density BS EN 15401:2010 Solid Recovered Fuels- Determination of bulk density	0.5kg/m ³	Not Accredited

Method Number	Title	Description	Reference	LOD	Accreditation Status
DETSC 5021	Auto Ignition Temperature	A quantity of the sample is placed into a metal tray or crucible and placed into an oven or furnace. The temperature of the oven / furnace is increased in predefined increments and the temperature in which the sample ignites is noted.	None	25°C	Not Accredited